Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
2.
Int J Biochem Cell Biol ; 102: 151-160, 2018 09.
Article in English | MEDLINE | ID: mdl-30056265

ABSTRACT

Cancer stem cells secrete diffusible factors into the microenvironment that bind to specific endothelial cell receptors and initiate an angiogenesis cascade. Tumor-induced angiogenesis is an important parameter of tumorigenesis and is critical for tumor growth and metastasis. A pvrl-4 encoded gene, NECTIN-4, has potential roles in cancer cell growth and aggressiveness, and it is only expressed in cancer cells. There is evidence that nectin-4 plays a role in tumorigenesis, but the function of nectin-4 in tumor angiogenesis has lacked thorough evidence of mechanism. Using highly metastatic breast cancer cells and human umbilical vein endothelial cells (HUVECs), we have developed an excellent angiogenesis model and systematically studied the contribution of nectin-4 to angiogenesis. We also provide in-depth in ovo, in vivo and in vivo evidence that nectin-4 causes angiogenesis. Following hypoxia, metastatic breast cancer stem cells (mBCSCs) driven ADAM-17 expression causes the shedding of the ecto-domain of nectin-4 into the microenvironment, which physically interacts with integrin-ß4 specifically on endothelial cells. This interaction promotes angiogenesis via the Src, PI3K, AKT, iNOS pathway and not by Phospho-Erk or NF-κß pathways. In vitro, in ovo and in vivo induction and abrogation of an angiogenesis cascade in the presence and absence of the nectin-4 ecto-domain, respectively, confirms its role in angiogenesis. Thus, disrupting the interaction between nectin-4 ecto-domain and integrin-ß4 may provide a means of targeting mBCSC-induced angiogenesis.


Subject(s)
Breast Neoplasms/blood supply , Cell Adhesion Molecules/chemistry , Cell Adhesion Molecules/metabolism , Endothelial Cells/metabolism , Integrin beta4/metabolism , Neovascularization, Pathologic/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Enzyme Activation , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Neoplasm Metastasis , Protein Domains , Solubility , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...