Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 127(31): 11092-101, 2005 Aug 10.
Article in English | MEDLINE | ID: mdl-16076217

ABSTRACT

Synthesis of an analogue of the C-cluster of C. hydrogenoformans carbon monoxide dehydrogenase requires formation of a planar Ni(II) site and attachment of an exo iron atom in the core unit NiFe(4)S(5). The first objective has been achieved by two reactions: (i) displacement of Ph(3)P or Bu(t)()NC at tetrahedral Ni(II) sites of cubane-type [NiFe(3)S(4)](+) clusters with chelating diphosphines, and (ii) metal atom incorporation into a cuboidal [Fe(3)S(4)](0) cluster with a M(0) reactant in the presence of bis(1,2-dimethylphosphino)ethane (dmpe). The isolated product clusters [(dmpe)MFe(3)S(4)(LS(3))](2-) (M = Ni(II) (9), Pd(II) (12), Pt(II) (13); LS(3) = 1,3,5-tris((4,6-dimethyl-3-mercaptophenyl)thio)-2,4,6-tris(p-tolylthio)benzene(3-)) contain the cores [MFe(3)(mu(2)-S)(mu(3)-S)(3)](+) having planar M(II)P(2)S(2) sites and variable nonbonding M...S distances of 2.6-3.4 A. Reaction (i) involves a tetrahedral --> planar Ni(II) structural change between isomeric cubane and cubanoid [NiFe(3)S(4)](+) cores. Based on the magnetic properties of 12 and earlier considerations, the S = (5)/(2) ground state of the cubanoid cluster arises from the [Fe(3)S(4)](-) fragment, whereas the S = (3)/(2) ground state of the cubane cluster is a consequence of antiferromagnetic coupling between the spins of Ni(2+) (S = 1) and [Fe(3)S(4)](-). Other substitution reactions of [NiFe(3)S(4)](+) clusters and 1:3 site-differentiated [Fe(4)S(4)](2+) clusters are described, as are the structures of 12, 13, [(Me(3)P)NiFe(3)S(4)(LS(3))](2-), and [Fe(4)S(4)(LS(3))L'](2-) (L' = Me(2)NC(2)H(4)S(-), Ph(2)P(O)C(2)H(4)S(-)). This work significantly expands our initial report of cluster 9 (Panda et al. J. Am. Chem. Soc. 2004, 126, 6448-6459) and further demonstrates that a planar M(II) site can be stabilized within a cubanoid [NiFe(3)S(4)](+) core.


Subject(s)
Aldehyde Oxidoreductases/chemistry , Iron-Sulfur Proteins/chemical synthesis , Multienzyme Complexes/chemistry , Crystallography, X-Ray , Iron-Sulfur Proteins/chemistry , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation
2.
J Am Chem Soc ; 126(20): 6448-59, 2004 May 26.
Article in English | MEDLINE | ID: mdl-15149242

ABSTRACT

A method has been devised that creates a planar Ni(II) site from a tetrahedral site in a NiFe(3)S(4) cubane-type cluster. Reaction of [(Ph(3)P)NiFe(3)S(4)(LS(3))](2)(-) (2) with 1,2-bis(dimethylphosphino)ethane affords [(dmpe)NiFe(3)S(4)(LS(3))](2)(-) (3), isolated in ca. 45% yield as (Et(4)N)(2)[3a].2.5MeCN and (Et(4)N)(2)[3b].0.25MeCN, both of which occur in triclinic space group P. Each crystalline form contains two crystallographically inequivalent clusters with the same overall structure but slightly different dimensions. The cluster is bound by three thiolate terminal ligands to semirigid cavitand ligand LS(3). The NiFe(3)S(4) core contains three tetrahedral sites, one Fe(micro(3)-S)(3)(SR) and two Fe(micro(3)-S)(2)(micro(2)-S)(SR) with normal metric features, and one distorted square planar Ni(micro(3)-S)(2)P(2) site in a Ni(micro(3)-S)(2)Fe face with mean bond lengths Ni-P = 2.147(9) A and Ni-S = 2.29(2) A. The opposite Fe(2)(micro(3)-S)(micro(2)-S) face places the micro(2)-S atom at nonbonding and variable distances (2.60-2.90 A) above the nickel atom. Binding of the strong-field ligand dmpe results in a planar Ni(II) site and deconstruction of the full cubane geometry. The structure approximates that established crystallographically in the C-cluster of C. hydrogenoformans carbon monoxide dehydrogenase whose NiFe(4)S(4) core contains a planar NiS(4) site and three tetrahedral FeS(4) sites in a fragment that is bridged by sulfide atoms to an exo iron atom. Mössbauer studies of polycrystalline samples containing both clusters 3a and 3b reveal the presence of at least two cluster types. The spectroscopically best defined cluster accounts for ca. 54% of total iron and exhibits hyperfine interactions quite similar to those reported for the S = (5)/(2) state of the protein-bound cubane-type cluster [ZnFe(3)S(4)](1+), whose Mössbauer spectrum revealed the presence of a high-spin Fe(2+) site and a delocalized Fe(2.5+)Fe(2.5+) pair. Development of reactions leading to a planar nickel and a sulfide-bridged iron atom is requisite to attainment of a synthetic analogue of this complex protein-bound cluster. This work demonstrates a tetrahedral (2) --> planar (3) Ni(II) stereochemical conversion can be effected by binding of ligands that generate a sufficiently strong in-plane ligand field (dmpe = 1,2-bis(dimethylphosphino)ethane, LS(3) = 1,3,5-tris((4,6-dimethyl-3-mercaptophenyl)thio)-2,4,6-tris(p-tolylthio)benzene(3-)).


Subject(s)
Aldehyde Oxidoreductases/chemistry , Iron/chemistry , Multienzyme Complexes/chemistry , Nickel/chemistry , Sulfur/chemistry , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Magnetic Resonance Spectroscopy , Models, Molecular , Oxidation-Reduction , Rhodospirillum rubrum/enzymology , Thermus/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...