Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 15(9): 14185-14192, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34398602

ABSTRACT

We have developed a single-step, high-throughput methodology to selectively confine sub-micrometer particles of a specific size into sequentially inscribed nanovoid patterns by utilizing electrostatic and entropic particle-void interactions in an ionic solution. The nanovoid patterns can be rendered positively charged by coating with an aluminum oxide layer, which can then localize negatively charged particles of a specific size into ordered arrays defined by the nanovoid topography. On the basis of the Poisson-Boltzmann model, the size-selective localization of particles in the voids is directed by the interplay between particle-nanovoid geometry, electrostatic interactions, and ionic entropy change induced by charge regulation in the electrical double layer overlapping region. The underlying principle and developed method could potentially be extended to size-selective trapping, separation, and patterning of many other objects including biological structures.

2.
Phys Rev Lett ; 120(25): 253902, 2018 Jun 22.
Article in English | MEDLINE | ID: mdl-29979064

ABSTRACT

Resonant light scattering by metallic and high-index dielectric nanoparticles has received enormous attention and found many great applications. However, low-index dielectric nanoparticles typically do not show resonant scattering behaviors due to poor light confinement caused by small index contrast. This Letter describes a simple and effective approach to drastically enhance the resonance effect of the low-index particles by partial metal dressing. Mie resonances of low-index nanoparticles can now be easily visualized by scattered light. This scattering peak depends on sphere size and has a reasonable linewidth. A size difference as small as 8 nm was resolved by a peak shift or even by color change. The scattering peak is attributed to the enhanced TE_{11} Mie resonance of the low-index nanospheres. The metal dress not only provides a high-reflection boundary, but also functions as an antenna to couple the confined light power to the far field, leading to scattering maxima in the spectra. Additionally, the enhanced TE_{11} Mie resonance in low-index nanoparticles features a considerable magnetic response due to the strong circulating displacement currents induced by the intensified E field despite of a low permittivity (hence low index) of the particles. The enhanced Mie resonances could be used to sense minute changes in size or refractive index of low-index nanoparticles and benefit a wide range of applications.

3.
Nanoscale ; 6(24): 14636-42, 2014 Dec 21.
Article in English | MEDLINE | ID: mdl-25363145

ABSTRACT

We present a versatile and simple methodology for continuous and scalable 2D micro/nano-structure fabrication via sequential 1D patterning strokes enabled by dynamic nano-inscribing (DNI) and vibrational indentation patterning (VIP) as well as a 'single-stroke' 2D patterning using a DNI tool in VIP.

SELECTION OF CITATIONS
SEARCH DETAIL
...