Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 95(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38717270

ABSTRACT

An efficient and compact, 20 kW solid-state power amplifier (SSA) at 325 MHz has been designed and developed in-house, using single stage combining. It comprises of 24 nos. of 1 kW power amplifier (PA) modules, a 24-way Wilkinson power combiner and divider, and other peripheral systems. The typical gain and conversion efficiency of the PA modules at 1.0 kW output is 21.7 dB and 66.6%, respectively. It is demonstrated that overall power gain and AC to RF efficiency of this SSA at 20 kW is 88.5 dB and 54.8%, respectively, which matches closely with the design estimates. The harmonic content in the RF output is < -40 dBc for all the harmonics. The results of the Monte Carlo simulation are also presented, showing lower bound on combining efficiency with a degree of confidence if magnitude and phase data for 24 inputs are randomly chosen from a normal distribution's pre-defined interval. The salient features of this SSA include power density of 12.7 kW/m3, AC to RF efficiency of 54.8% at 20 kW, and guaranteed output of 20 kW with one failed PA module and 18.1 kW under two failed PA modules condition.

2.
Rev Sci Instrum ; 85(4): 043304, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24784599

ABSTRACT

A deuteron radio frequency quadrupole (RFQ) accelerator has been designed, fabricated, and tested at BARC, which will be used for neutron generation. The RFQ operates at a frequency of 350 MHz and needs an inter-vane voltage of 44 kV to accelerate the deuteron beam to 400 keV within a length of 1.03 m. The error analysis shows that the offset of two opposite vanes in the same direction by 100 µm leads to a change in resonant frequency by 1.3 MHz and a significant change of fields in the quadrants (∼±40% with respect to average field). From the 3D analysis, we have observed that the unwanted dipole mode frequencies are very near to the quadrupole mode frequency which will make structure sensitive to the perturbations. In order to move the dipole modes away from the quadrupole modes, we have used the dipole stabilizer rods. The 5 wire transmission line theory was used to study the perturbative analysis of the RFQ and based on this a computer program has been written to tune the cavity to get required field distribution. Based on these studies, a 1.03 m long RFQ made of OFE copper has been fabricated and tested. Even though the RFQ was designed for deuteron (D(+)) beam, we tested it by accelerating both the proton (H(+)) and D(+) beams. The RFQ was operated in pulsed mode and accelerated both H(+) and D(+) beams to designed values of 200 and 400 keV, respectively. The measured parameters are in good agreement with the designed values validating our simulations and fabrication processes. In this paper, simulations, RF measurements, and beam commissioning results are presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...