Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Am J Med Genet A ; 155A(11): 2841-54, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21964744

ABSTRACT

We report on an intellectually disabled girl with a de novo satellited chromosome 10 (10qs) and performed a review of the literature of the non-acrocentric satellited chromosomes (NASC). Satellites and stalks normally occur on the short arms of acrocentric chromosomes; however, the literature cites several reports of satellited non-acrocentric chromosomes, which presumably result from a translocation with an acrocentric chromosome. This is, to our knowledge, the third report of a 10qs chromosome. The phenotype observed in the proband prompted a search for a structural rearrangement of chromosome 10q. By microsatellite analysis we observed a 4 Mb deletion on the long arm of chromosome 10, approximately 145 kb from the telomere. FISH and array CGH analyses revealed a complex rearrangement involving in range from the centromere to the telomere: A 9.64 Mb 10q26.11-q26.2 duplication, a 1.3 Mb region with no copy number change, followed by a 5.62 Mb 10q26.2-q26.3 deletion and a translocation of satellite material. The homology between the repeat sequences at 10q subtelomere region and the sequences on the acrocentric short arms may explain the origin of the rearrangement and it is likely that the submicroscopic microdeletion and microduplication are responsible for the abnormal phenotype in our patient. The patient presented here, with a 15-year follow-up, manifests a distinct phenotype different from the 10q26 pure distal monosomy and trisomy syndromes.


Subject(s)
Chromosome Deletion , Chromosome Duplication , Chromosomes, Human, Pair 10/genetics , Intellectual Disability/genetics , Adolescent , Body Dysmorphic Disorders/genetics , Body Dysmorphic Disorders/pathology , Centromere/genetics , Chromosome Disorders/genetics , Chromosomes, Human, Y/genetics , Comparative Genomic Hybridization , Female , Follow-Up Studies , Humans , In Situ Hybridization, Fluorescence , Infant , Inheritance Patterns , Intellectual Disability/pathology , Nucleolus Organizer Region/genetics , Phenotype , Prenatal Diagnosis , Telomere/genetics , Translocation, Genetic
2.
Hum Genet ; 122(5): 423-30, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17676343

ABSTRACT

The basic genomic defect in Wolf-Hirschhorn syndrome (WHS), including isolated 4p deletions and various unbalanced de novo 4p;autosomal translocations and above all t(4p;8p), is heterogeneous. Olfactory receptor gene clusters (ORs) on 4p were demonstrated to mediate a group of WHS-associated t(4p;8p)dn translocations. The breakpoint of a 4-Mb isolated deletion was also recently reported to fall within the most distal OR. However, it is still unknown whether ORs mediate all 4p-autosomal translocations, or whether they are involved in the origin of isolated 4p deletions. Another unanswered question is whether a parental inversion polymorphism on 4p16 can act as predisposing factor in the origin of WHS-associated rearrangements. We investigated the involvement of the ORs in the origin of 73 WHS-associated rearrangements. No hotspots for rearrangements were detected. Breakpoints on 4p occurred within the proximal or the distal olfactory receptor gene cluster in 8 of 73 rearrangements (11%). These were five t(4p;8p) translocations, one t(4p;7p) translocation and two isolated terminal deletions. ORs were not involved in one additional t(4p;8p) translocation, in a total of nine different 4p;autosomal translocations and in the majority of isolated deletions. The presence of a parental inversion polymorphism on 4p was investigated in 30 families in which the 4p rearrangements, all de novo, were tested for parental origin (7 were maternal and 23 paternal). It was detected only in the mothers of 3 t(4p;8p) cases. We conclude that WHS-associated chromosome changes are not usually mediated by low copy repeats. The 4p16.3 inversion polymorphism is not a risk factor for their origin.


Subject(s)
Chromosome Inversion , Chromosomes, Human, Pair 4/genetics , Multigene Family , Receptors, Odorant/genetics , Wolf-Hirschhorn Syndrome/genetics , Adolescent , Adult , Child , Child, Preschool , Chromosome Aberrations , Chromosome Deletion , Chromosomes, Human, Pair 7/genetics , Chromosomes, Human, Pair 8/genetics , Cohort Studies , Female , Humans , In Situ Hybridization, Fluorescence , Infant , Male , Polymorphism, Genetic , Risk Factors , Translocation, Genetic
3.
Am J Med Genet A ; 116A(4): 356-9, 2003 Feb 01.
Article in English | MEDLINE | ID: mdl-12522791

ABSTRACT

We report two unrelated patients each with two supernumerary marker chromosomes (SMCs) derived from chromosome 15, and thus resulting in partial hexasomy. Hexasomy in the one case (family 1) was diagnosed at prenatal diagnosis and did not include the Prader-Willi/Angelman critical region (PWACR). The double SMCs were also found in the mother, the pregnancy continued to term, and an apparently phenotypically normal child was born. This represents the first report of transmission of double SMCs from mother to child. In the second case (family 2), the hexasomy did include the PWACR and was de novo in origin. This patient manifested severe psychomotor retardation, clefting of the soft palate, hypotonia, seizure-like episodes, and other phenotypic features. The aberrant phenotype is attributable to the hexasomy for the PWACR gene loci. The normal homologs of chromosome 15 proved to be biparental in origin while the two SMCs appeared maternal.


Subject(s)
Angelman Syndrome/genetics , Chromosome Aberrations , Chromosomes, Human, Pair 15 , Adult , Chromosome Disorders , Female , Gene Duplication , Gene Rearrangement , Humans , In Situ Hybridization, Fluorescence , Prader-Willi Syndrome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...