Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Parasit Vectors ; 6: 30, 2013 Feb 04.
Article in English | MEDLINE | ID: mdl-23379981

ABSTRACT

BACKGROUND: Indiscriminate use of synthetic insecticides to eradicate mosquitoes has caused physiological resistance. Plants provide a reservoir of biochemical compounds; among these compounds some have inhibitory effect on mosquitoes. In the present study the larvicidal, adulticidal and genotoxic activity of essential oil of Psoralea corylifolia Linn. against Culex quinquefasciatus Say was explored. METHODS: Essential oil was isolated from the seeds of P. corylifolia Linn. Larvicidal and adulticidal bioassay of Cx. quinquefasciatus was carried out by WHO method. Genotoxic activity of samples was determined by comet assay. Identification of different compounds was carried out by gas chromatography- mass spectrometry analysis. RESULTS: LC50 and LC90 values of essential oil were 63.38±6.30 and 99.02±16.63 ppm, respectively against Cx. quinquefasciatus larvae. The LD50 and LD90 values were 0.057±0.007 and 0.109±0.014 mg/cm2 respectively against adult Cx. quinquefasciatus,. Genotoxicity of adults was determined at 0.034 and 0.069 mg/cm2. The mean comet tail length was 6.2548±0.754 µm and 8.47±0.931 µm and the respective DNA damage was significant i.e. 6.713% and 8.864% in comparison to controls. GCMS analysis of essential oil revealed 20 compounds. The major eight compounds were caryophyllene oxide (40.79%), phenol,4-(3,7-dimethyl-3-ethenylocta-1,6-dienyl) (20.78%), caryophyllene (17.84%), α-humulene (2.15%), (+)- aromadendrene (1.57%), naphthalene, 1,2,3,4-tetra hydro-1,6-dimethyle-4-(1-methyl)-, (1S-cis) (1.53%), trans- caryophyllene (0.75%), and methyl hexadecanoate (0.67%). CONCLUSION: Essential oil obtained from the seeds of P. corylifolia showed potent toxicity against larvae and adult Cx. quinquefasciatus. The present work revealed that the essential oil of P. corylifolia could be used as environmentally sound larvicidal and adulticidal agent for mosquito control.


Subject(s)
Culex/drug effects , Insecticides/pharmacology , Mutagens/pharmacology , Oils, Volatile/pharmacology , Plant Extracts/pharmacology , Psoralea/chemistry , Animals , Biological Assay , Comet Assay , Culex/growth & development , Gas Chromatography-Mass Spectrometry , Insecticides/isolation & purification , Larva/drug effects , Mutagens/isolation & purification , Oils, Volatile/isolation & purification , Plant Extracts/isolation & purification , Seeds/chemistry , Survival Analysis
2.
Infect Genet Evol ; 13: 218-23, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23146830

ABSTRACT

Anopheles fluviatilis James, an important malaria vector in the Oriental region has been established as a complex of at least three cryptic species which vary in their biological characteristics and malaria transmission potential. The sibling species S, T and U of Fluviatilis Complex can be identified by examination of species-specific fixed inversions in the polytene chromosomes and can also be differentiated by an allele-specific PCR assay based on differences in the D3 region of 28S ribosomal DNA (rDNA) of these species. Here we report a new An. fluviatilis population from villages under Laksar Community Health Centre, District Haridwar (Uttarakhand state), India which differs from the three sibling species of Fluviatilis Complex by two fixed paracentric inversions, s(1) and S in polytene chromosome arms 2 and 3 respectively. Longitudinal study carried out in study villages showed that the new cytotype was sympatric with species T and U in all the collections and no inversion heterozygotes were observed between them. Thus presence of two fixed paracentric inversions in polytene chromosomes with total absence of inversion heterozygotes demonstrates reproductive isolation which unequivocally establishes this cytological variant as a new species, provisionally designated as species V in the Fluviatilis Complex. Analysis of DNA sequences of D3 domain of 28S rDNA and ITS 2 region has also shown that species V is distinctly different from species S, T and U. With the discovery of new species in the Fluviatilis Complex, in-depth studies are required to know its distribution pattern and biological characteristics and to ascertain its role in malaria transmission.


Subject(s)
Anopheles/classification , Anopheles/genetics , Animals , DNA, Ribosomal , DNA, Ribosomal Spacer , Genotype , Insect Vectors/classification , Insect Vectors/genetics , Molecular Sequence Data , Phylogeny , Polytene Chromosomes , RNA, Ribosomal, 28S
3.
Malar J ; 8: 124, 2009 Jun 08.
Article in English | MEDLINE | ID: mdl-19500429

ABSTRACT

BACKGROUND: Mosquitoes transmit serious human diseases, causing millions of deaths every year. Use of synthetic insecticides to control vector mosquitoes has caused physiological resistance and adverse environmental effects in addition to high operational cost. Insecticides of botanical origin have been reported as useful for control of mosquitoes. Azadirachta indica (Meliaceae) and its derived products have shown a variety of insecticidal properties. The present paper discusses the larvicidal activity of neem-based biopesticide for the control of mosquitoes. METHODS: Larvicidal efficacy of an emulsified concentrate of neem oil formulation (neem oil with polyoxyethylene ether, sorbitan dioleate and epichlorohydrin) developed by BMR & Company, Pune, India, was evaluated against late 3rd and early 4th instar larvae of different genera of mosquitoes. The larvae were exposed to different concentrations (0.5-5.0 ppm) of the formulation along with untreated control. Larvicidal activity of the formulation was also evaluated in field against Anopheles, Culex, and Aedes mosquitoes. The formulation was diluted with equal volumes of water and applied @ 140 mg a.i./m(2) to different mosquito breeding sites with the help of pre calibrated knapsack sprayer. Larval density was determined at pre and post application of the formulation using a standard dipper. RESULTS: Median lethal concentration (LC(50)) of the formulation against Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti was found to be 1.6, 1.8 and 1.7 ppm respectively. LC(50) values of the formulation stored at 26 degrees C, 40 degrees C and 45 degrees C for 48 hours against Ae. aegypti were 1.7, 1.7, 1.8 ppm while LC(90) values were 3.7, 3.7 and 3.8 ppm respectively. Further no significant difference in LC(50) and LC(90) values of the formulation was observed against Ae. aegypti during 18 months storage period at room temperature. An application of the formulation at the rate of 140 mg a.i./m(2) in different breeding sites under natural field conditions provided 98.1% reduction of Anopheles larvae on day 1; thereafter 100% reduction was recorded up to week 1 and more than 80% reduction up to week 3, while percent reduction against Culex larvae was 95.5% on day 1, and thereafter 80% reduction was achieved up to week 3. The formulation also showed 95.1% and, 99.7% reduction of Aedes larvae on day 1 and day 2 respectively; thereafter 100% larval control was observed up to day 7. CONCLUSION: The neem oil formulation was found effective in controlling mosquito larvae in different breeding sites under natural field conditions. As neem trees are widely distributed in India, their formulations may prove to be an effective and eco-friendly larvicide, which could be used as an alternative for malaria control.


Subject(s)
Aedes/drug effects , Anopheles/drug effects , Culex/drug effects , Glycerides/pharmacology , Insecticides/pharmacology , Terpenes/pharmacology , Animals , Azadirachta/chemistry , Emulsions/pharmacology , Glycerides/isolation & purification , Humans , India , Lethal Dose 50 , Survival Analysis , Terpenes/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...