Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Nanoscale ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976244

ABSTRACT

Primary zinc-silver batteries are widely employed in military, aerospace, and marine applications. However, the development of secondary zinc-silver batteries is still a subject of on-going research. For example, these batteries suffer from rapid capacity loss during cycling due to instabilities of the zinc anode and the silver cathode. While there is a large body of work on the Zn anode, there is limited work toward stabilizing the Ag electrode and thereby achieving a long cycle life. In this work, we propose a gold-silver nanostructure where gold acts as a scaffolding material and improves the retention of structural integrity during cell cycling. We show that this nanostructure improves battery capacity as well as capacity retention after 35 cycles. Our work emphasizes the role of nanostructuring in enabling a newer secondary battery chemistry based on existing primary ones.

2.
J Chem Phys ; 160(20)2024 May 28.
Article in English | MEDLINE | ID: mdl-38785288

ABSTRACT

High fidelity single photon sources are required for the implementation of quantum information processing and communications protocols. Although colloidal quantum dots (CQDs) are single photon sources, their efficacy is limited by their tendency to show finite multiphoton emission at higher excitation powers. Here, we show that wave function engineering of CQDs enables the realization of emitters with significantly improved single photon emission performance. We study the ZnS/CdSe/CdS system. It is shown that this system offers significantly improved probabilities of single photon emission. While conventional CQDs such as CdSe/CdS exhibit a g2(0) > 0.5 ± 0.02 at ⟨N⟩ = 2.17, ZnS/CdSe/CdS show a greatly improved g2(0) ≈ 0.04 ± 0.01. Improved single photon emission performance encourages the use of colloidal materials as quantum light sources in emerging quantum devices.

3.
Nanoscale Adv ; 6(10): 2602-2610, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38752143

ABSTRACT

Embedding nanoparticles with different functionalities into soft substrates is a convenient tool to realize technologically significant multifunctional materials. This study focuses on incorporating bimetallic plasmonic nanoparticles into soft crystals made of cetyltrimethylammonium bromide-iodide. We observed the emergence of a novel symmetry-lowered cetrimonium crystal polymorph that enables the realization of strong interparticle plasmonic coupling in these composite materials. The observed crystal polymorph exhibits a triclinic structure with significantly reduced unit cell volume compared to standard CTAB. Solid-state nuclear magnetic resonance studies revealed an enhanced cetrimonium chain rigidity and a commensurate decrease in the mobility of the methyl groups. This is attributed to iodide incorporation. To study the influence of these interactions on solution phase dynamical properties, we employed light scattering measurements using gold nanospheres as markers, where we observed aggregation of these particles. We then develop a two step synthetic scheme that successfully enables high levels (533 particles per µm2) of incorporation of bimetallic plasmonic particles into the emergent crystal polymorph.

4.
J Chem Phys ; 154(7): 074707, 2021 Feb 21.
Article in English | MEDLINE | ID: mdl-33607898

ABSTRACT

Photonic devices stand to benefit from the development of chromophores with tunable, precisely controlled spontaneous emission lifetimes. Here, we demonstrate a method to continuously tune the radiative emission lifetimes of a class of chromophores by varying the density of electronic states involved in the emission process. In particular, we examined the peculiar composition-dependent electronic structure of copper doped CdZnSe quantum dots. It is shown that the nature and density of electronic states involved with the emission process is a function of copper inclusion level, providing a very direct handle for controlling the spontaneous lifetimes. The spontaneous emission lifetimes are estimated by examining the ratios of emission lifetimes to absolute quantum yields and also measured directly by ultrafast luminescence upconversion experiments. We find excellent agreement between these classes of experiments. This scheme enables us to tune spontaneous emission lifetimes by three orders of magnitude from ∼15 ns to over ∼7 µs, which is unprecedented in existing lumophores.

5.
Nanotechnology ; 31(5): 055401, 2020 Jan 24.
Article in English | MEDLINE | ID: mdl-31627208

ABSTRACT

We describe optical switching in solutions of semiconductor nanocrystals illuminated by a 404 nm continuous wave laser source, driven by the formation of a micro-bubble of solvent vapor in the solution. Low boiling solvents such as hexane show an oscillatory modulation of transmitted light intensity (period ∼4 s) while solvents with intermediate boiling points such as toluene give a stable switching response. An on/off ratio of 83% is observed in the transmitted pump beam. Using this, a pump beam (404 nm, 80 mW continuous wave) was shown to reversibly switch the state of a probe laser (630 nm, 5 mW continuous wave). This switch thus serves as an optical analog of an electronic transistor and demonstrates the potential for all optical switching of low power light beams. Further, all optical universal logic gates, NAND and NOR, were also demonstrated using the micro-bubble switch.

6.
J Phys Chem Lett ; 9(15): 4451-4456, 2018 Aug 02.
Article in English | MEDLINE | ID: mdl-30037228

ABSTRACT

We observe and study the anomalous Stokes shift of CuAlS2/CdS quantum dots. While all known I-III-VI2 semiconductor core/shell quantum dots show Stokes shifts in excess of 100 meV, the shift associated with CuAlS2/CdS quantum dots is uniquely large, even exceeding 1.4 eV in some cases. CuAlS2/CdS quantum dots are thus associated with cross sections less than 10-17 cm2 under the emission maximum. We investigate this anomaly using spectroscopic techniques and ascribe it to the existence of a strong type-II offset between CuAlS2 and CdS layers. Besides their strong Stokes shift, CuAlS2/CdS quantum dots also exhibit high quantum yields (63%) as well as long emission lifetimes (∼1500 ns). Because of the combined existence of these properties, CuAlS2/CdS quantum dots can act as tunable, transparent emitters over the entire visible spectrum. As a demonstration of their potential, we describe the construction of a wide area transparent lighting device with waveguided optical excitation and a clear aperture of 7.5 cm2.

7.
J Phys Chem Lett ; 9(4): 696-701, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29343063

ABSTRACT

While several potential applications of CuFeS2 quantum dots have already been reported, doubts regarding their optical and physical properties persist. In particular, it is unclear if the quantum dot material is metallic, a degenerately doped semiconductor, or else an intrinsic semiconductor material. Here we examine the physical properties of CuFeS2 quantum dots in order to address this issue. Specifically, we study the bump that is observed in the optical spectra of these quantum dots at ∼500 nm. Using a combination of structural and optical characterization methods, ultrafast spectroscopy, as well as electronic structure calculations, we ascertain that the unusual purple color of CuFeS2 quantum dots as well the golden luster of CuFeS2 films arise from the existence of a plasmon resonance in these materials. While the presence of free carriers causes this material to resemble gold, surface treatments are also described to suppress the plasmon resonance altogether.

8.
J Phys Chem Lett ; 9(3): 635-640, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29337575

ABSTRACT

We study the optical properties of copper containing II-VI alloy quantum dots (CuxZnyCd1-x-ySe). Copper mole fractions within the host are varied from 0.001 to 0.35. No impurity phases are observed over this composition range, and the formation of secondary phases of copper selenide are observed only at xCu > 0.45. The optical absorption and emission spectra of these materials are observed to be a strong function of xCu, and provide information regarding composition induced impurity-impurity interactions. In particular, the integrated cross section of optical absorption per copper atom changes sharply (from 1 × 10 -2 nm3 to 4 × 10 -2 nm3) at xCu = 0.12, suggesting a composition induced change in local electronic structure. These materials may serve as model systems to understand the electronic structure of I-III-VI2 semiconductor compounds.

9.
ACS Omega ; 3(1): 266-272, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-31457892

ABSTRACT

Two initially neutral semiconductor quantum dots with appropriate band offsets can participate in a ground state charge transfer process. The charge transfer manifests itself in the form of bleaching of optical transitions and also causes the quantum dots to precipitate from solution, giving rise to assemblies with unusual properties. As this represents a postsynthetic modification of the electronic structure of quantum dots, it holds tremendous potential for improving the characteristics of quantum dot devices. Here, we study the dependencies of the properties of these assemblies on the structure of the participating quantum dots. In particular, we find that for assemblies formed out of Cu:CdS and ZnTe/CdS quantum dots, the composition of the assembly varies from 1:1.26 to 1:0.23 ZnTe/CdS to Cu:CdS as the shell thickness of CdS in ZnTe/CdS is increased. In contrast, the composition changes from 1:1.1 to 1:15 for PbSe/CdSe and Cu:CdS quantum dots, as the size of the PbSe core is increased. These observations are explained on the basis of a phenomenological thermodynamic model. The applicability of thermodynamics to this example of self-assembly is verified empirically.

10.
J Phys Chem Lett ; 8(17): 4113-4121, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28812901

ABSTRACT

Dielectric constants of MAPbX3 (X = Br, I) in the 1 kHz-1 MHz range show strong temperature dependence near room temperature, in contrast to the nearly temperature-independent dielectric constant of CsPbBr3. This strong temperature dependence for MAPbX3 in the tetragonal phase is attributed to the MA+ dipoles rotating freely within the probing time scale. This interpretation is supported by ab initio molecular dynamics simulations on MAPbI3 that establish these dipoles as randomly oriented with a rotational relaxation time scale of ∼7 ps at 300 K. Further, we probe the intriguing possibility of transient polarization of these dipoles following a photoexcitation process with important consequences on the photovoltaic efficiency, using a photoexcitation pump and second harmonic generation efficiency as a probe with delay times spanning 100 fs-1.8 ns. The absence of a second harmonic signal at any delay time rules out the possibility of any transient ferroelectric state under photoexcitation.

11.
J Am Chem Soc ; 138(32): 10207-13, 2016 08 17.
Article in English | MEDLINE | ID: mdl-27447297

ABSTRACT

We report the synthesis of copper iron sulfide (CuFeS2) quantum dots (QDs). These materials exhibit a tunable band gap that spans the range 0.5-2 eV (600-2500 nm). Although the as-prepared material is nonemissive, CuFeS2/CdS core/shell structures are shown to exhibit quantum yields that exceed 80%. Like other members of the I-III-VI2 family QDs, CuFeS2 based nanoparticles exhibit a long-lived emission that is significantly red-shifted compared to the band gap. CuFeS2 QDs are unique in terms of their composition. In particular, these QDs are the only band-gap-tunable infrared chromophore composed entirely of elements with atomic numbers less than 30.

12.
J Phys Chem Lett ; 7(13): 2412-9, 2016 Jul 07.
Article in English | MEDLINE | ID: mdl-27282976

ABSTRACT

In view of the continued controversy concerning the polar/nonpolar nature of the hybrid perovskite system, CH3NH3PbI3, we report the first investigation of a time-resolved pump-probe measurement of the second harmonic generation efficiency as well as using its more traditional form as a sensitive probe of the absence/presence of the center of inversion in the system both in its excited and ground states, respectively. Our results clearly show that SHG efficiency, if nonzero, is below the limit of detection, strongly indicative of a nonpolar or centrosymmetric structure. Our results on the same samples, based on temperature dependent single crystal X-ray diffraction and P-E loop measurements, are entirely consistent with the above conclusion of a centrosymmetric structure for this compound in all three phases, namely the high temperature cubic phase, the intermediate temperature tetragonal phase and the low temperature orthorhombic phase. It is important to note that all our experimental probes are volume averaging and performed on bulk materials, suggesting that basic material properties of CH3NH3PbI3 are consistent with a centrosymmetric, nonpolar structure.

13.
J Phys Chem Lett ; 7(7): 1244-8, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-26978011

ABSTRACT

Semiconductor quantum dots have replaced conventional inorganic phosphors in numerous applications. Despite their overall successes as emitters, their impact as laser materials has been severely limited. Eliciting stimulated emission from quantum dots requires excitation by intense short pulses of light typically generated using other lasers. In this Letter, we develop a new class of quantum dots that exhibit gain under conditions of extremely low levels of continuous wave illumination. We observe thresholds as low as 74 mW/cm(2) in lasers made from these materials. Due to their strong optical absorption as well as low lasing threshold, these materials could possibly convert light from diffuse, polychromatic sources into a laser beam.

14.
Phys Chem Chem Phys ; 17(43): 29374-9, 2015 Nov 21.
Article in English | MEDLINE | ID: mdl-26473471

ABSTRACT

Despite significant improvements in their properties as emitters, colloidal quantum dots have not had much success in emerging as suitable materials for laser applications. Gain in most colloidal systems is short lived, and needs to compete with biexcitonic decay. This has necessitated the use of short pulsed lasers to pump quantum dots to thresholds needed for amplified spontaneous emission or lasing. Continuous wave pumping of gain that is possible in some inorganic phosphors has therefore remained a very distant possibility for quantum dots. Here, we demonstrate that trilayer heterostructures could provide optimal conditions for demonstration of continuous wave lasing in colloidal materials. The design considerations for these materials are discussed in terms of a kinetic model. The electronic structure of the proposed dot architectures is modeled within effective mass theory.

15.
J Phys Chem Lett ; 5(13): 2208-13, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-26279535

ABSTRACT

Although semiconductor quantum dots are promising materials for displays and lighting due to their tunable emissions, these materials also suffer from the serious disadvantage of self-absorption of emitted light. The reabsorption of emitted light is a serious loss mechanism in practical situations because most phosphors exhibit subunity quantum yields. Manganese-based phosphors that also exhibit high stability and quantum efficiency do not suffer from this problem but in turn lack emission tunability, seriously affecting their practical utility. Here, we present a class of manganese-doped quantum dot materials, where strain is used to tune the wavelength of the dopant emission, extending the otherwise limited emission tunability over the yellow-orange range for manganese ions to almost the entire visible spectrum covering all colors from blue to red. These new materials thus combine the advantages of both quantum dots and conventional doped phosphors, thereby opening new possibilities for a wide range of applications in the future.

16.
ACS Nano ; 7(12): 11055-63, 2013 Dec 23.
Article in English | MEDLINE | ID: mdl-24251926

ABSTRACT

Semiconductor nanocrystals of different formulations have been extensively studied for use in thin-film photovoltaics. Materials used in such devices need to satisfy the stringent requirement of having large absorption cross sections. Hence, type-II semiconductor nanocrystals that are generally considered to be poor light absorbers have largely been ignored. In this article, we show that type-II semiconductor nanocrystals can be tailored to match the light-absorption abilities of other types of nanostructures as well as bulk semiconductors. We synthesize type-II ZnTe/CdS core/shell nanocrystals. This material is found to exhibit a tunable band gap as well as absorption cross sections that are comparable to CdTe. This result has significant implications for thin-film photovoltaics, where the use of type-II nanocrystals instead of pure semiconductors can improve charge separation while also providing a much needed handle to regulate device composition.

17.
ACS Nano ; 6(5): 3832-40, 2012 May 22.
Article in English | MEDLINE | ID: mdl-22424299

ABSTRACT

Hybrid superstructures allow a convenient route to the development of materials with multiple functionalities (e.g., sensor, marker, conductor) out of monofunctional (e.g., excitonic, plasmonic) building blocks. This work describes a general synthetic route to the preparation of metal|dielectric|quantum dot hybrid superstructures that have excitonic and plasmonic resonances independently tunable from the ultraviolet to the mid-infrared spectral region. We demonstrate that structural tuning can be used to control intercomponent coupling leading to the emergence of unique optical properties. We illustrate this capability by demonstrating single- and multicolor emission from coupled systems, and a significant enhancement of two-photon absorption cross sections of quantum dots. Such properties in a robust yet dispersible particle can be useful in a number of applications including bioimaging and microscopy, and in optoelectronic devices, as well as serve as a platform for fundamental studies of metal-semiconductor interactions.

18.
Nano Lett ; 11(11): 4753-8, 2011 Nov 09.
Article in English | MEDLINE | ID: mdl-21942276

ABSTRACT

We have developed a new class of colloidal nanocrystals composed of Cu-doped ZnSe cores overcoated with CdSe shells. Via spectroscopic and magneto-optical studies, we conclusively demonstrate that Cu impurities represent paramagnetic +2 species and serve as a source of permanent optically active holes. This implies that the Fermi level is located below the Cu(2+)/Cu(1+) state, that is, in the lower half of the forbidden gap, which is a signature of a p-doped material. It further suggests that the activation of optical emission due to the Cu level requires injection of only an electron without a need for a valence-band hole. This peculiar electron-only emission mechanism is confirmed by experiments in which the titration of the nanocrystals with hole-withdrawing molecules leads to enhancement of Cu-related photoluminescence while simultaneously suppressing the intrinsic, band-edge exciton emission. In addition to containing permanent optically active holes, these newly developed materials show unprecedented emission tunability from near-infrared (1.2 eV) to the blue (3.1 eV) and reduced losses from reabsorption due to a large Stokes shift (up to 0.7 eV). These properties make them very attractive for applications in light-emission and lasing technologies and especially for the realization of novel device concepts such as "zero-threshold" optical gain.


Subject(s)
Copper/chemistry , Luminescent Measurements/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Refractometry/methods , Light , Materials Testing , Particle Size , Porosity
19.
J Am Chem Soc ; 133(5): 1176-9, 2011 Feb 09.
Article in English | MEDLINE | ID: mdl-21207995

ABSTRACT

We report an efficient synthesis of copper indium sulfide nanocrystals with strong photoluminescence in the visible to near-infrared. This method can produce gram quantities of material with a chemical yield in excess of 90% with minimal solvent waste. The overgrowth of as-prepared nanocrystals with a few monolayers of CdS or ZnS increases the photoluminescence quantum efficiency to > 80%. On the basis of time-resolved spectroscopic studies of core/shell particles, we conclude that the emission is due to an optical transition that couples a quantized electron state to a localized hole state, which is most likely associated with an internal defect.

20.
Science ; 322(5903): 929-32, 2008 Nov 07.
Article in English | MEDLINE | ID: mdl-18988849

ABSTRACT

Hot electrons in semiconductors lose their energy very quickly (within picoseconds) to lattice vibrations. Slowing this energy loss could prove useful for more efficient photovoltaic or infrared devices. With their well-separated electronic states, quantum dots should display slow relaxation, but other mechanisms have made it difficult to observe. We report slow intraband relaxation (>1 nanosecond) in colloidal quantum dots. The small cadmium selenide (CdSe) dots, with an intraband energy separation of approximately 0.25 electron volts, are capped by an epitaxial zinc selenide (ZnSe) shell. The shell is terminated by a CdSe passivating layer to remove electron traps and is covered by ligands of low infrared absorbance (alkane thiols) at the intraband energy. We found that relaxation is markedly slowed with increasing ZnSe shell thickness.

SELECTION OF CITATIONS
SEARCH DETAIL
...