Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Rep ; 51(1): 59, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38165514

ABSTRACT

BACKGROUND: The dairy industry has experienced significant economic losses as a result of mastitis, an inflammatory disease of cows, including both subclinical and clinical cases. Milk exosome microRNAs have gained attention due to their stable and selective wrapping nature, offering potential for the prognosis and diagnosis of bovine mastitis, the most common pathological condition of the mammary gland. METHODS AND RESULTS:  In the present investigation, the microRNA profile of milk exosomes was explored using high-throughput small RNA sequencing data in sub-clinical mastitic and healthy crossbred Vrindavani cattle. In both groups, 349 microRNAs were identified, with 238 (68.19%) microRNAs co-expressed; however, 35 and 76 distinct microRNAs were found in subclinical mastitic and healthy cattle, respectively. Differential expression analysis revealed 11 microRNAs upregulated, and 18 microRNAs were downregulated in sub-clinical mastitic cattle. The functional annotation of the target genes of differentially expressed known and novel microRNAs including bta-miR-375, bta-miR-199-5p and bta-miR-12030 reveals their involvement in the regulation of immune response and inflammatory mechanisms and could be involved in development of mastitis. CONCLUSIONS: The analysis of milk exosomal miRNAs cargos hold great promise as an approach to study the underlying molecular mechanisms associated with mastitis in high milk producing dairy cattle. Concurrently, the significantly downregulated miR-375 may upregulate key target genes, including CTLA4, IHH, IRF1, and IL7R. These genes are negative regulators of immune response pathways, which could be associated with impaired inflammatory mechanisms in mammary cells. According to the findings, bta-miR-375 could be a promising biomarker for the development of mastitis in dairy cattle.


Subject(s)
Exosomes , Mastitis, Bovine , MicroRNAs , Female , Cattle , Animals , Humans , Milk , Mastitis, Bovine/genetics , Exosomes/genetics , MicroRNAs/genetics
2.
PLoS One ; 16(11): e0259572, 2021.
Article in English | MEDLINE | ID: mdl-34762692

ABSTRACT

The objective of this study was to calculate the extent and decay of linkage disequilibrium (LD) in 96 crossbred Vrindavani cattle genotyped with Bovine SNP50K Bead Chip. After filtering, 43,821 SNPs were retained for final analysis, across 2500.3 Mb of autosome. A significant percentage of SNPs was having minor allele frequency of less than 0.20. The extent of LD between autosomal SNPs up to 10 Mb apart across the genome was measured using r2 statistic. The mean r2 value was 0.43, if pairwise distance of marker was less than10 kb and it decreased further to 0.21 for 25-50 kb markers distance. Further, the effect of minor allele frequency and sample size on LD estimate was investigated. The LD value decreased with the increase in inter-marker distance, and increased with the increase of minor allelic frequency. The estimated inbreeding coefficient and effective population size were 0.04, and 46 for present generation, which indicated small and unstable population of Vrindavani cattle. These findings suggested that a denser or breed specific SNP panel would be required to cover all genome of Vrindavani cattle for genome wide association studies (GWAS).


Subject(s)
Gene Frequency/genetics , Linkage Disequilibrium/genetics , Polymorphism, Single Nucleotide/genetics , Alleles , Animals , Cattle , Data Collection , Female , Genetic Variation , Genetics, Population , Genome-Wide Association Study , Genotype , Inbreeding , Models, Statistical , Sample Size
3.
Front Genet ; 11: 589496, 2020.
Article in English | MEDLINE | ID: mdl-33391343

ABSTRACT

Vrindavani is an Indian composite cattle breed developed by crossbreeding taurine dairy breeds with native indicine cattle. The constituent breeds were selected for higher milk production and adaptation to the tropical climate. However, the selection response for production and adaptation traits in the Vrindavani genome is not explored. In this study, we provide the first overview of the selection signatures in the Vrindavani genome. A total of 96 Vrindavani cattle were genotyped using the BovineSNP50 BeadChip and the SNP genotype data of its constituent breeds were collected from a public database. Within-breed selection signatures in Vrindavani were investigated using the integrated haplotype score (iHS). The Vrindavani breed was also compared to each of its parental breeds to discover between-population signatures of selection using two approaches, cross-population extended haplotype homozygosity (XP-EHH) and fixation index (F ST). We identified 11 common regions detected by more than one method harboring genes such as LRP1B, TNNI3K, APOB, CACNA2D1, FAM110B, and SPATA17 associated with production and adaptation. Overall, our results suggested stronger selective pressure on regions responsible for adaptation compared to milk yield.

4.
BMC Genet ; 16: 73, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-26123673

ABSTRACT

BACKGROUND: Indian agriculture is an economic symbiosis of crop and livestock production with cattle as the foundation. Sadly, the population of indigenous cattle (Bos indicus) is declining (8.94% in last decade) and needs immediate scientific management. Genetic characterization is the first step in the development of proper management strategies for preserving genetic diversity and preventing undesirable loss of alleles. Thus, in this study we investigated genetic diversity and relationship among eleven Indian cattle breeds using 21 microsatellite markers and mitochondrial D loop sequence. RESULTS: The analysis of autosomal DNA was performed on 508 cattle which exhibited sufficient genetic diversity across all the breeds. Estimates of mean allele number and observed heterozygosity across all loci and population were 8.784 ± 0.25 and 0.653 ± 0.014, respectively. Differences among breeds accounted for 13.3% of total genetic variability. Despite high genetic diversity, significant inbreeding was also observed within eight populations. Genetic distances and cluster analysis showed a close relationship between breeds according to proximity in geographic distribution. The genetic distance, STRUCTURE and Principal Coordinate Analysis concluded that the Southern Indian Ongole cattle are the most distinct among the investigated cattle populations. Sequencing of hypervariable mitochondrial DNA region on a subset of 170 cattle revealed sixty haplotypes with haplotypic diversity of 0.90240, nucleotide diversity of 0.02688 and average number of nucleotide differences as 6.07407. Two major star clusters for haplotypes indicated population expansion for Indian cattle. CONCLUSIONS: Nuclear and mitochondrial genomes show a similar pattern of genetic variability and genetic differentiation. Various analyses concluded that the Southern breed 'Ongole' was distinct from breeds of Northern/ Central India. Overall these results provide basic information about genetic diversity and structure of Indian cattle which should have implications for management and conservation of indicine cattle diversity.


Subject(s)
DNA, Mitochondrial/genetics , Genetic Markers , Genetic Variation , Genetics, Population , Microsatellite Repeats/genetics , Animals , Cattle , Cluster Analysis , Gene Frequency , Geography , Haplotypes , India , Polymorphism, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...