Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 33(4)2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33146151

ABSTRACT

In this work, using density functional theory based electronic structure calculations, we carry out a comparative study of geometric, mechanical, electronic, magnetic, and thermoelectric properties of CoxTaZalloys, whereZ= Si, Ge and Sn andx= 1 and 2. In the present study, a systematic approach has been taken to perform calculations to probe the possibility of existence of a tetragonal (martensite) phase in these alloys and also to perform a comparative study of various physical properties of the six systems, mentioned above, in the cubic and possible tetragonal phases. From our calculations, a tetragonal phase has been found to be stable up to about 400 K in case of Co2TaSi and Co2TaGe alloys, and up to about 115 K for Co2TaSn, indicating the presence of room temperature cubic phase in the latter alloy unlike the former two. Further, the results based on the energetics and electronic structure have been found to corroborate well with the elastic properties. All the above-mentioned full Heusler alloys (FHAs) show magnetic behavior with metallicity in both the phases. However, their half Heusler counterparts exhibit non-magnetic semi-conducting behavior in the cubic phase. We calculate and compare the thermoelectric properties, in detail, of all the materials in the cubic and possible tetragonal phases. In the cubic phase, the half Heusler alloys exhibit improved thermoelectric properties compared to the respective FHAs. Furthermore, it is observed that the FHAs exhibit higher (by about an order of magnitude) values of Seebeck coefficients in their cubic phases, compared to those in the tetragonal phases (which are of the order of only a few micro-volts/Kelvin). The observed behaviors of the transport properties of the probed materials have been analyzed using the topology of the Fermi surface.

2.
Small ; 16(38): e2002669, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32803832

ABSTRACT

The major challenges faced by candidate electrode materials in lithium-ion batteries (LIBs) include their low electronic and ionic conductivities. 2D van der Waals materials with good electronic conductivity and weak interlayer interaction have been intensively studied in the electrochemical processes involving ion migrations. In particular, molybdenum ditelluride (MoTe2 ) has emerged as a new material for energy storage applications. Though 2H-MoTe2 with hexagonal semiconducting phase is expected to facilitate more efficient ion insertion/deinsertion than the monoclinic semi-metallic phase, its application as an anode in LIB has been elusive. Here, 2H-MoTe2 , prepared by a solid-state synthesis route, has been employed as an efficient anode with remarkable Li+ storage capacity. The as-prepared 2H-MoTe2 electrodes exhibit an initial specific capacity of 432 mAh g-1 and retain a high reversible specific capacity of 291 mAh g-1 after 260 cycles at 1.0 A g-1 . Further, a full-cell prototype is demonstrated by using 2H-MoTe2 anode with lithium cobalt oxide cathode, showing a high energy density of 454 Wh kg-1 (based on the MoTe2 mass) and capacity retention of 80% over 100 cycles. Synchrotron-based in situ X-ray absorption near-edge structures have revealed the unique lithium reaction pathway and storage mechanism, which is supported by density functional theory based calculations.

3.
J Chem Phys ; 150(19): 194702, 2019 May 21.
Article in English | MEDLINE | ID: mdl-31117777

ABSTRACT

Using first principles calculations based on density functional theory (DFT), we probe various possible stacking arrangements of bilayer aluminene and intercalate six transition metal (TM) atoms (Ti, Cr, Mn, Fe, Co, and Ni) in unique bilayer aluminene systems. Further, we calculate valence charge density and electron localization function to ascertain the nature of bonding present in both the pristine and TM-intercalated composite systems. Intercalation of Cr, Mn, and Fe is found to result in the magnetic ground state. For Ti, Co, and Ni-intercalated systems, the starting trigonal symmetry has changed to a tetragonal symmetry. Co and Ni intercalated systems exhibit much higher (negative) formation energies compared to the other composite systems. In addition, nesting of the Fermi surface has been probed for the Co and Ni intercalated systems and observations indicate the possibility of the presence of charge density wave in the systems. A dispersion-corrected DFT study suggests that the van der Waals interaction is not likely to play a crucial role in determining the properties of both the pristine and TM-intercalated systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...