Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Lett Appl Microbiol ; 73(4): 471-476, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34219252

ABSTRACT

Microbial bioremediation of oil-contaminated sites is still a challenge due to the slower rate and susceptibility of microbes to a higher concentration of oil. The poor bioavailability, hydrophobicity, and non-polar nature of oil slow down microbial biodegradation. In this study, biodegradation of crude oil is performed in fed-batch mode using an oil-degrader Pseudomonas aeruginosa to address the issue of substrate toxicity. The slower biodegradation was integrated with faster biosorption for effective oil remediation. Highly fibrous and porous sugarcane bagasse was surface modified with hydrophobic octyl groups to improve the surface-oil interactions. The microbe showed 2 folds enhanced oil degradation in the fed-batch study, which was further increased by 1·5 folds in the integrated biosorption coupled biodegradation approach. The biosorption-assisted biodegradation approach supported the microbial growth to 2 folds higher than the fed-batch study without biosorbent. The analysis of biosurfactant production indicated the 3 folds higher concentration in fed-batch modes as compared to batch study. In the integrated strategy, the concentration of contaminant (oil) reduces to quite a tolerable level to microbes, which improved effective metabolism and thus overall biodegradation. This study puts forward a promising strategy for improved degradation of hazardous hydrophobic contaminants in a sustainable, economic and eco-friendly manner.


Subject(s)
Petroleum , Biodegradation, Environmental , Pseudomonas aeruginosa , Surface-Active Agents
2.
Mater Sci Eng C Mater Biol Appl ; 114: 111033, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32994014

ABSTRACT

The present investigation focuses on the deposition of biphasic calcium phosphate (BCP) and titania (TiO2) composite films on Ti-6Al-4V substrates using radio frequency (RF) magnetron sputtering. Three different compositions such as 100% BCP, 25% TiO2-75% BCP and 50% TiO2-50% BCP films were fabricated, and the physical, mechanical and biological behaviors of the films were analyzed. Post deposition, the films were annealed at 700 °C for 2 h to induce the crystallinity and to study its effect on different properties. The wettability was found to be 95°(±3°) for 100% BCP, 73°(±2°) for 25% TiO2-75% BCP and 35°(±1°) for 50% TiO2-50% BCP films, indicating improvement in wettability with an increase of TiO2 weight percent in the composite films. The value of critical load (Lc2) for 100 BCP film improved from 8.7 N to 14.8 N (25 TiO2-BCP) and >19 N (50 TiO2-BCP film), indicating improvement in bonding strength with TiO2 addition. The fetal bovine serum (FBS) adsorption decreased from 7.11 ± 0.25 to 4.42 ± 0.17 µg/cm2 with TiO2 weight percent from 0 to 50%. Cell adhesion and proliferation significantly improved in 100% BCP, 25% TiO2-75% BCP and 50% TiO2-50% BCP films as compared to uncoated Ti-6Al-4V. The maximum cell proliferation was found on the surface of 50% TiO2-50% BCP film (210.1 ± 6.5%) after 6 days of incubation. However, after annealing all the films exhibited less cell adhesion and cytocompatibility presumably due to change in composition. Globular apatite structure was observed on all modified surfaces after 7 days immersion in simulated body fluid (SBF); however, the growth rate was higher for 50 TiO2-BCP films. All these results revealed that the addition of TiO2 in BCP film (without annealing) is advantageous for improving the bonding strength as well as the bioactivity of implants, which can be used for long-term dental and orthopedic applications.


Subject(s)
Hydroxyapatites , Titanium , Surface Properties
3.
J Mech Behav Biomed Mater ; 86: 143-157, 2018 10.
Article in English | MEDLINE | ID: mdl-29986289

ABSTRACT

Biphasic calcium phosphate (BCP) consists of hydroxyapatite (HA) and beta-tricalcium phosphate (ß-TCP). BCP is mainly used in artificial tooth and bone implants due to higher protein adsorption and osteoinductivity compared to HA alone. Although, many studies have been investigated on radio frequency (RF) magnetron sputtering of HA on Ti and its alloy, however, limited studies are available on BCP coating by this process and its bioactivity and adhesion behavior. Thus, in order to obtain a better understanding and applications of BCP films, RF magnetron sputtering is used to deposit BCP films on Ti-6Al-4V in the present study. The effect of film thickness on wettability, mechanical properties and in vitro bioactivity at a particular set of sputtering parameters are investigated. BCP film thickness of 400 nm, 700 nm and 1000 nm are obtained when sputtered for 4 h, 6 h and 8 h, respectively. Although the phase compositions are almost same for all films, the surface roughness values varies around 112-153 nm with rise in film thickness. This in turn enhances hydrophilicity in accordance to Wenzel relation as the contact angle decreases from 89.6 ±â€¯2° to 61.2 ±â€¯2°. It is found that the 1000 nm film possess highest micro-hardness and surface scratch resistance. No cracking of film up to scratch load of 2.3 N and no significant delamination up to load of 7.8 N are observed, indicating very good adhesion between BCP films and Ti-6Al-4V substrate. There is a great improvement in wt% apatite layer formation on all films when dipped in simulated body fluid (SBF) for 14 days. Among these, 1000 nm sputtered film results the highest increase in wt% apatite layer from 44.87% to 86.7%. The apatite layer possess small globular as well as elliptical structure are nucleated and grew on all the BCP films. Thus, sputtering of BCP films improves wettability, mechanical properties as well as bioactivity of Ti-6Al-4V, which can be applied for orthopedic implants.


Subject(s)
Calcium Phosphates/chemistry , Coated Materials, Biocompatible/chemistry , Mechanical Phenomena , Titanium/chemistry , Alloys , Biomimetic Materials/metabolism , Body Fluids/metabolism , Coated Materials, Biocompatible/metabolism , Hardness , Surface Properties , Titanium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...