Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Small ; 18(27): e2201667, 2022 07.
Article in English | MEDLINE | ID: mdl-35652507

ABSTRACT

In this work, the synthesis and characterization of ultrathin metal oxide, called biotene, using liquid-phase exfoliation from naturally abundant biotite are demonstrated. The atomically thin biotene is used for energy harvesting using its flexoelectric response under multiple bending. The effective flexoelectric response increases due to the presence of surface charges, and the voltage increases up to ≈8 V, with a high mechano-sensitivity of 0.79 V N-1 for normal force. This flexoelectric response is further validated by density functional theory (DFT) simulations. The atomically thin biotene shows an increased response in the magnetic field and thermal heating. The synthesis of two-dimensional (2D) metal-oxide biotene suggests a wealth of future 2D-oxide material for energy generation and energy harvesting applications.


Subject(s)
Glucose Oxidase , Oxides , Aluminum Silicates , Drug Combinations , Ferrous Compounds , Lactoperoxidase , Muramidase
2.
Nanoscale ; 14(21): 7788-7797, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35394476

ABSTRACT

Two-dimensional (2D) materials have been shown to be efficient in energy harvesting. Here, we report the use of waste heat to generate electricity via the combined piezoelectric and triboelectric properties of 2D cobalt telluride (CoTe2). The piezo-triboelectric nanogenerator (PTNG) produced an open-circuit voltage of ∼5 V under 1 N force and the effect of temperature in the range of 305-363 K shows a four-fold energy conversion efficiency improvement. The 2D piezo-tribogenerator shows excellent characteristics with a maximum voltage of ∼10 V, fast response time, and high responsivity. Density functional theory was used to gain further insights and validation of the experimental results. Our results could lead to energy harvesting approaches using 2D materials from various thermal sources and dissipating waste heat from electronic devices.

3.
ACS Appl Mater Interfaces ; 13(3): 3771-3781, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33438991

ABSTRACT

The properties and, hence, the application of materials are dependent on the way their constituent atoms are arranged. Here, we report a facile approach to produce body-centered cubic (bcc) and face-centered cubic (fcc) phases of bimetallic FeCo crystalline nanoparticles embedded into nitrogen-doped carbon nanotubes (NCNTs) with equal loading and almost similar particle size for both crystalline phases by a rational selection of precursors. The two electrocatalysts with similar composition but different crystalline structures of the encapsulated nanoparticles have allowed us, for the first time, to account for the effect of crystal structure on the overall work function of electrocatalysts and the concomitant correlation with the oxygen reduction reaction (ORR). This study unveils that the electrocatalysts with lower work function show lower activation energy to facilitate the ORR. Importantly, the difference between the ORR activation energy on electrocatalysts and their respective work functions are found to be identical (∼0.2 eV). A notable decrease in the ORR activity after acid treatment indicates the significant role of encapsulated FeCo nanoparticles in influencing the oxygen electrochemistry by modulating the material property of overall electrocatalysts.

4.
Nanoscale ; 11(4): 2017-2026, 2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30644949

ABSTRACT

There has been a recent demand for the development of luminescent materials for visualizations of latent fingerprints (LFPs) for achieving enhanced security. Also recently, there has been a new research trend in the development of 2D materials from non-layered semiconductors with strong luminescence properties in the visible region. The conventional growth process of luminescent materials limits their capacity of tuning the structure and light emission efficiency. However, multi-atom doping provides an additional degree of freedom to tune the basic morphologies and optical properties of luminescent semiconductors by controlling the defect levels. Here, by using a simple chemical technique, multi-atom (Cu and Mn) doped rarely reported 2D nanosheets of zinc sulphide (ZnS) have been grown. Thus, a stable high fluorescence efficiency of ∼62% in the visible region has been realized for the visualization of LFPs. Furthermore, near-white light emission has been demonstrated by coating the synthesized materials with a suitable doping concentration on a commercially available UV-LED chip. The proposed technique may be utilized further to build up other 2D nanostructured materials for multifunctional applications in solid state lighting, LFPs and forensic science.

5.
Adv Mater ; 29(29)2017 Aug.
Article in English | MEDLINE | ID: mdl-28593718

ABSTRACT

Ultrathin ceramic coatings are of high interest as protective coatings from aviation to biomedical applications. Here, a generic approach of making scalable ultrathin transition metal-carbide/boride/nitride using immiscibility of two metals is demonstrated. Ultrathin tantalum carbide, nitride, and boride are grown using chemical vapor deposition by heating a tantalum-copper bilayer with corresponding precursor (C2 H2 , B powder, and NH3 ). The ultrathin crystals are found on the copper surface (opposite of the metal-metal junction). A detailed microscopy analysis followed by density functional theory based calculation demonstrates the migration mechanism, where Ta atoms prefer to stay in clusters in the Cu matrix. These ultrathin materials have good interface attachment with Cu, improving the scratch resistance and oxidation resistance of Cu. This metal-metal immiscibility system can be extended to other metals to synthesize metal carbide, boride, and nitride coatings.

SELECTION OF CITATIONS
SEARCH DETAIL