Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Curr Drug Metab ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38984579

ABSTRACT

One of the biggest obstacles to the treatment of diseases, particularly serious conditions like cancer, is therapeutic resistance. The process of drug resistance is influenced by a number of important variables, including MDR genes, drug efflux, low-quality medications, inadequate dosage, etc. Drug resistance must be addressed, and new combinations based on the pharmacokinetics/pharmacodynamics (PK-PD) characteristics of the partner pharmaceuticals must be developed in order to extend the half-lives of already available medications. The primary mechanism of drug elimination is hepatic biotransformation of medicines by cytochrome P450 (CYP) enzymes; of these CYPs, CYP3A4 makes up 30-40% of all known cytochromes that metabolize medications. Induction or inhibition of CYP3A4-mediated metabolism affects the pharmacokinetics of most anticancer drugs, but these details are not fully understood and highlighted because of the complexity of tumor microenvironments and various influencing patient related factors. The involvement of CYPs, particularly CYP3A4 and other drug-metabolizing enzymes, in cancer medication resistance will be covered in the current review.

2.
Article in English | MEDLINE | ID: mdl-38831575

ABSTRACT

Androgen (AR) signaling is the main signaling for the development of the prostate and its normal functioning. AR is highly specific for testosterone and dihydrotestosterone, significantly contributing to prostate development, physiology, and cancer. All these receptors have emerged as crucial therapeutic targets for PCa. In the year 1966, the Noble prize was awarded to Huggins and Hodge for their groundbreaking discovery of AR. As it is a pioneer transcription factor, it belongs to the steroid hormone receptor family and consists of domains, including DNA binding domain (DBD), hormone response elements (HRE), C-terminal ligand binding domain (LBD), and N-terminal regulatory domains. Structural variations in AR, such as AR gene amplification, LBD mutations, alternative splicing of exons, hypermethylation of AR, and co- regulators, are major contributors to PCa. It's signaling is crucial for the development and functioning of the prostate gland, with the AR being the key player. The specificity of AR for testosterone and dihydrotestosterone is important in prostate physiology. However, when it is dysregulated, AR contributes significantly to PCa. However, the structural variations in AR, such as gene amplification, mutations, alternative splicing, and epigenetic modifications, drive the PCa progression. Therefore, understanding AR function and dysregulation is essential for developing effective therapeutic strategies. Thus, the aim of this review was to examine how AR was initially pivotal for prostate development and how it turned out to show both positive and detrimental implications for the prostate.

3.
Mol Ther ; 32(6): 1934-1955, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38582961

ABSTRACT

Second mitochondrial-derived activator of caspase (SMAC), also known as direct inhibitor of apoptosis-binding proteins with low pI (Diablo), is known as a pro-apoptotic mitochondrial protein released into the cytosol in response to apoptotic signals. We recently reported SMAC overexpression in cancers as essential for cell proliferation and tumor growth due to non-apoptotic functions, including phospholipid synthesis regulation. These functions may be associated with its interactions with partner proteins. Using a peptide array with 768 peptides derived from 11 selected SMAC-interacting proteins, we identified SMAC-interacting sequences. These SMAC-binding sequences were produced as cell-penetrating peptides targeted to the cytosol, mitochondria, or nucleus, inhibiting cell proliferation and inducing apoptosis in several cell lines. For in vivo study, a survivin/baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5)-derived peptide was selected, due to its overexpression in many cancers and its involvement in mitosis, apoptosis, autophagy, cell proliferation, inflammation, and immune responses, as a target for cancer therapy. Specifically, a SMAC-targeting survivin/BIRC5-derived peptide, given intratumorally or intravenously, strongly inhibited lung tumor growth, cell proliferation, angiogenesis, and inflammation, induced apoptosis, and remodeled the tumor microenvironment. The peptide promoted tumor infiltration of CD-8+ cells and increased cell-intrinsic programmed cell death protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1) expression, resulting in cancer cell self-destruction and increased tumor cell death, preserving immune cells. Thus, targeting the interaction between the multifunctional proteins SMAC and survivin represents an innovative therapeutic cancer paradigm.


Subject(s)
Apoptosis Regulatory Proteins , Apoptosis , Cell Proliferation , Mitochondrial Proteins , Survivin , Humans , Survivin/metabolism , Survivin/genetics , Animals , Mice , Mitochondrial Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/drug therapy , Inflammation/metabolism , Xenograft Model Antitumor Assays , Protein Binding , Inhibitor of Apoptosis Proteins/metabolism , Inhibitor of Apoptosis Proteins/genetics , Cell-Penetrating Peptides/pharmacology , Cell-Penetrating Peptides/chemistry , Peptides/pharmacology , Peptides/chemistry , Immunosuppression Therapy
4.
Cells ; 13(7)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38607066

ABSTRACT

The strategy for treating bladder cancer (BC) depends on whether there is muscle invasion or not, with the latter mostly treated with intravesical therapy, such as with bacillus Calmette-Guérin (BCG). However, BCG treatment is unsuccessful in 70% of patients, who are then subjected to radical cystectomy. Although immune-checkpoint inhibitors have been approved as a second-line therapy for a subset of BC patients, these have failed to meet primary endpoints in clinical trials. Thus, it is crucial to find a new treatment. The mitochondrial gatekeeper protein, the voltage-dependent anion channel 1 (VDAC1), mediates metabolic crosstalk between the mitochondria and cytosol and is involved in apoptosis. It is overexpressed in many cancer types, as shown here for BC, pointing to its significance in high-energy-demanding cancer cells. The BC cell lines UM-UC3 and HTB-5 express high VDAC1 levels compared to other cancer cell lines. VDAC1 silencing in these cells using siRNA that recognizes both human and mouse VDAC1 (si-m/hVDAC1-B) reduces cell viability, mitochondria membrane potential, and cellular ATP levels. Here, we used two BC mouse models: subcutaneous UM-UC3 cells and chemically induced BC using the carcinogen N-Butyl-N-(4-hydroxybutyl) nitrosamine (BBN). Subcutaneous UM-UC3-derived tumors treated with si-m/hVDAC1 showed inhibited tumor growth and reprogrammed metabolism, as reflected in the reduced expression of metabolism-related proteins, including Glut1, hexokinase, citrate synthase, complex-IV, and ATP synthase, suggesting reduced metabolic activity. Furthermore, si-m/hVDAC1-B reduced the expression levels of cancer-stem-cell-related proteins (cytokeratin-14, ALDH1a), modifying the tumor microenvironment, including decreased angiogenesis, extracellular matrix, tumor-associated macrophages, and inhibited epithelial-mesenchymal transition. The BBN-induced BC mouse model showed a clear carcinoma, with damaged bladder morphology and muscle-invasive tumors. Treatment with si-m/hVDAC1-B encapsulated in PLGA-PEI nanoparticles that were administered intravesically directly to the bladder showed a decreased tumor area and less bladder morphology destruction and muscle invasion. Overall, the obtained results point to the potential of si-m/hVDAC1-B as a possible therapeutic tool for treating bladder cancer.


Subject(s)
Urinary Bladder Neoplasms , Voltage-Dependent Anion Channel 1 , Humans , Animals , Mice , Voltage-Dependent Anion Channel 1/metabolism , BCG Vaccine , Mitochondria/metabolism , Urinary Bladder Neoplasms/pathology , Adenosine Triphosphate/metabolism , Tumor Microenvironment
5.
Adv Med ; 2023: 5060665, 2023.
Article in English | MEDLINE | ID: mdl-36960081

ABSTRACT

Malaria continued to be a deadly situation for the people of tropical and subtropical countries. Although there has been a marked reduction in new cases as well as mortality and morbidity rates in the last two decades, the reporting of malaria caused 247 million cases and 619000 deaths worldwide in 2021, according to the WHO (2022). The development of drug resistance and declining efficacy against most of the antimalarial drugs/combination in current clinical practice is a big challenge for the scientific community, and in the absence of an effective vaccine, the problem becomes worse. Experts from various research organizations worldwide are continuously working hard to stop this disaster by employing several strategies for the development of new antimalarial drugs/combinations. The current review focuses on the history of antimalarial drug discovery and the advantages, loopholes, and opportunities associated with the common strategies being followed for antimalarial drug development.

6.
Cancers (Basel) ; 15(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36900417

ABSTRACT

The mitochondrial voltage-dependent anion channel 1 (VDAC1) protein is involved in several essential cancer hallmarks, including energy and metabolism reprogramming and apoptotic cell death evasion. In this study, we demonstrated the ability of hydroethanolic extracts from three different plants, Vernonanthura nudiflora (Vern), Baccharis trimera (Bac), and Plantago major (Pla), to induce cell death. We focused on the most active Vern extract. We demonstrated that it activates multiple pathways that lead to impaired cell energy and metabolism homeostasis, elevated ROS production, increased intracellular Ca2+, and mitochondria-mediated apoptosis. The massive cell death generated by this plant extract's active compounds involves the induction of VDAC1 overexpression and oligomerization and, thereby, apoptosis. Gas chromatography of the hydroethanolic plant extract identified dozens of compounds, including phytol and ethyl linoleate, with the former producing similar effects as the Vern hydroethanolic extract but at 10-fold higher concentrations than those found in the extract. In a xenograft glioblastoma mouse model, both the Vern extract and phytol strongly inhibited tumor growth and cell proliferation and induced massive tumor cell death, including of cancer stem cells, inhibiting angiogenesis and modulating the tumor microenvironment. Taken together, the multiple effects of Vern extract make it a promising potential cancer therapeutic.

8.
Transl Neurodegener ; 11(1): 58, 2022 12 28.
Article in English | MEDLINE | ID: mdl-36578022

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) exhibits mitochondrial dysfunctions associated with dysregulated metabolism, brain inflammation, synaptic loss, and neuronal cell death. As a key protein serving as the mitochondrial gatekeeper, the voltage-dependent anion channel-1 (VDAC1) that controls metabolism and Ca2+ homeostasis is positioned at a convergence point for various cell survival and death signals. Here, we targeted VDAC1 with VBIT-4, a newly developed inhibitor of VDAC1 that prevents its pro-apoptotic activity, and mitochondria dysfunction. METHODS: To address the multiple pathways involved in AD, neuronal cultures and a 5 × FAD mouse model of AD were treated with VBIT-4. We addressed multiple topics related to the disease and its molecular mechanisms using immunoblotting, immunofluorescence, q-RT-PCR, 3-D structural analysis and several behavioral tests. RESULTS: In neuronal cultures, amyloid-beta (Aß)-induced VDAC1 and p53 overexpression and apoptotic cell death were prevented by VBIT-4. Using an AD-like 5 × FAD mouse model, we showed that VDAC1 was overexpressed in neurons surrounding Aß plaques, but not in astrocytes and microglia, and this was associated with neuronal cell death. VBIT-4 prevented the associated pathophysiological changes including neuronal cell death, neuroinflammation, and neuro-metabolic dysfunctions. VBIT-4 also switched astrocytes and microglia from being pro-inflammatory/neurotoxic to neuroprotective phenotype. Moreover, VBIT-4 prevented cognitive decline in the 5 × FAD mice as evaluated using several behavioral assessments of cognitive function. Interestingly, VBIT-4 protected against AD pathology, with no significant change in phosphorylated Tau and only a slight decrease in Aß-plaque load. CONCLUSIONS: The study suggests that mitochondrial dysfunction with its gatekeeper VDAC1 is a promising target for AD therapeutic intervention, and VBIT-4 is a promising drug candidate for AD treatment.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Mitochondrial Proteins , Amyloid beta-Peptides/metabolism , Brain/metabolism , Mitochondria/metabolism
9.
Life (Basel) ; 12(12)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36556476

ABSTRACT

The application of traditional medicines for the treatment of diseases, including diabetic neuropathy (DN), has received great attention. The aim of this study was to investigate the ameliorative potential of naringin, a flavanone, to treat streptozotocin-induced DN in rat models. After the successful induction of diabetes, DN complications were measured by various behavioral tests after 4 weeks of post-induction of diabetes with or without treatment with naringin. Serum biochemical assays such as fasting blood glucose, HbA1c%, insulin, lipid profile, and oxidative stress parameters were determined. Proinflammatory cytokines such as TNF-α and IL-6, and neuron-specific markers such as BDNF and NGF, were also assessed. In addition, pancreatic and brain tissues were subjected to histopathology to analyze structural alterations. The diabetic rats exhibited increased paw withdrawal frequencies for the acetone drop test and decreased frequencies for the plantar test, hot plate test, and tail flick test. The diabetic rats also showed an altered level of proinflammatory cytokines and oxidative stress parameters, as well as altered levels of proinflammatory cytokines and oxidative stress parameters. Naringin treatment significantly improved these parameters and helped in restoring the normal architecture of the brain and pancreatic tissues. The findings show that naringin's neuroprotective properties may be linked to its ability to suppress the overactivation of inflammatory molecules and mediators of oxidative stress.

10.
Front Oncol ; 12: 992260, 2022.
Article in English | MEDLINE | ID: mdl-36185255

ABSTRACT

Mitochondrial SMAC/Diablo induces apoptosis by binding the inhibitor of apoptosis proteins (IAPs), thereby activating caspases and, subsequently, apoptosis. Previously, we found that despite its pro-apoptotic activity, SMAC/Diablo is overexpressed in cancer, and demonstrated that in cancer it possesses new essential and non-apoptotic functions that are associated with regulating phospholipid synthesis including modulating mitochondrial phosphatidylserine decarboxylase activity. Here, we demonstrate additional functions for SMAC/Diablo associated with inflammation and immunity. CRISPR/Cas9 SMAC/Diablo-depleted A549 lung cancer cells displayed inhibited cell proliferation and migration. Proteomics analysis of these cells revealed altered expression of proteins associated with lipids synthesis and signaling, vesicular transport and trafficking, metabolism, epigenetics, the extracellular matrix, cell signaling, and neutrophil-mediated immunity. SMAC-KO A549 cell-showed inhibited tumor growth and proliferation and activated apoptosis. The small SMAC-depleted "tumor" showed a morphology of alveoli-like structures, reversed epithelial-mesenchymal transition, and altered tumor microenvironment. The SMAC-lacking tumor showed reduced expression of inflammation-related proteins such as NF-kB and TNF-α, and of the PD-L1, associated with immune system suppression. These results suggest that SMAC is involved in multiple processes that are essential for tumor growth and progression. Thus, targeting SMAC's non-canonical function is a potential strategy to treat cancer.

11.
Biomolecules ; 12(7)2022 06 27.
Article in English | MEDLINE | ID: mdl-35883451

ABSTRACT

Mesothelioma, an aggressive cancer with a poor prognosis, is linked to asbestos exposure. However, carbon nanotubes found in materials we are exposed to daily can cause mesothelioma cancer. Cancer cells reprogram their metabolism to support increased biosynthetic and energy demands required for their growth and motility. Here, we examined the effects of silencing the expression of the voltage-dependent anion channel 1 (VDAC1), controlling the metabolic and energetic crosstalk between mitochondria and the rest of the cell. We demonstrate that VDAC1 is overexpressed in mesothelioma patients; its levels increase with disease stage and are associated with low survival rates. Silencing VDAC1 expression using a specific siRNA identifying both mouse and human VDAC1 (si-m/hVDAC1-B) inhibits cell proliferation of mesothelioma cancer cells. Treatment of xenografts of human-derived H226 cells or mouse-derived AB1 cells with si-m/hVDAC1-B inhibited tumor growth and caused metabolism reprogramming, as reflected in the decreased expression of metabolism-related proteins, including glycolytic and tricarboxylic acid (-)cycle enzymes and the ATP-synthesizing enzyme. In addition, tumors depleted of VDAC1 showed altered microenvironments and inflammation, both associated with cancer progression. Finally, tumor VDAC1 silencing also eliminated cancer stem cells and induced cell differentiation to normal-like cells. The results show that silencing VDAC1 expression leads to reprogrammed metabolism and to multiple effects from tumor growth inhibition to modulation of the tumor microenvironment and inflammation, inducing differentiation of malignant cells. Thus, silencing VDAC1 is a potential therapeutic approach to treating mesothelioma.


Subject(s)
Mesothelioma , Nanotubes, Carbon , Animals , Apoptosis , Humans , Inflammation , Mesothelioma/genetics , Mesothelioma/therapy , Mice , RNA, Small Interfering/metabolism , Tumor Microenvironment , Voltage-Dependent Anion Channel 1/genetics , Voltage-Dependent Anion Channel 1/metabolism
12.
Chem Biol Drug Des ; 98(3): 466-479, 2021 09.
Article in English | MEDLINE | ID: mdl-34107169

ABSTRACT

Noscapine, an opium alkaloid, was discovered to bind tubulin, arrest dividing cells at mitosis, and selectively induce apoptosis to cancer cells. N-3-Br-Benzyl-Noscapine (Br-Bn-Nos), one of the derivatives of noscapine, was demonstrated to have improved anticancer potential compared with noscapine. We approached to evaluate the single and combined effect of Br-Bn-Nos and docetaxel (DOX) based on molecular modeling and cellular study. The individual predicted free energy of binding (∆Gbind,pred ) for Br-Bn-Nos and DOX with tubulin was found to be -28.89 and -36.07 kcal/mol based on molecular mechanics generalized Born solvation area (MM-GBSA) as well as -26.21 and -34.65 kcal/mol based on molecular mechanics Poisson Boltzmann solvation area (MM-PBSA), respectively. However, the ∆Gbind,pred of Br-Bn-Nos was significantly reduced (-33.02 and -30.24 kcal/mol using MM-GBSA and MM-PBSA) in the presence of DOX on its binding pocket. Parenthetically, the ∆Gbind,pred of DOX was significantly reduced (-37.17 and -32.80 kcal/mol using MM-GBSA and MM-PBSA) in the presence of Br-Bn-Nos on its binding pocket. The reduced ∆Gbind,pred in the presence of Br-Bn-Nos and DOX together indicated a combination effect of both the ligands. The combined interaction of both the agents onto tubulin dimmer was also determined experimentally using purified tubulin, in which a combination regimen of Br-Bn-Nos and DOX reduced the fluorescence intensity of tubulin to a higher value (68%) compared with the single regimen. Further, isobologram analysis revealed the synergistic effect of Br-Bn-Nos and DOX in antiproliferative activity using MCF-7 cell line at 48 hr (sum FIC = 0.49) and at 72 hr (sum FIC = 0.62). The combination dose regimen of Br-Bn-Nos and DOX blocks the cell cycle progression at the G2/M phase and induces apoptosis to cancer cells more effectively compared with the single regimen. Taken together, our study provides compelling evidence that the anticancer potential of noscapine derivatives may be substantially improved when it is used in a combined application with DOX for breast cancer.


Subject(s)
Antineoplastic Agents/chemistry , Docetaxel/chemistry , Noscapine/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Binding Sites , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Docetaxel/metabolism , Docetaxel/pharmacology , Drug Synergism , Female , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Molecular Docking Simulation , Noscapine/metabolism , Noscapine/pharmacology , Thermodynamics , Tubulin/chemistry , Tubulin/metabolism
13.
Mol Oncol ; 15(11): 3037-3061, 2021 11.
Article in English | MEDLINE | ID: mdl-33794068

ABSTRACT

SMAC/Diablo, a pro-apoptotic protein, yet it is overexpressed in several cancer types. We have described a noncanonical function for SMAC/Diablo as a regulator of lipid synthesis during cancer cell proliferation and development. Here, we explore the molecular mechanism through which SMAC/Diablo regulates phospholipid synthesis. We showed that SMAC/Diablo directly interacts with mitochondrial phosphatidylserine decarboxylase (PSD) and inhibits its catalytic activity during synthesis of phosphatidylethanolamine (PE) from phosphatidylserine (PS). Unlike other phospholipids (PLs), PE is synthesized not only in the endoplasmic reticulum but also in mitochondria. As a result, PSD activity and mitochondrial PE levels were increased in the mitochondria of SMAC/Diablo-deficient cancer cells, with the total amount of cellular PLs and phosphatidylcholine (PC) being lower as compared to SMAC-expressing cancer cells. Moreover, in the absence of SMAC/Diablo, PSD inhibited cancer cell proliferation by catalysing the overproduction of mitochondrial PE and depleting the cellular levels of PC, PE and PS. Additionally, we demonstrated that both SMAC/Diablo and PSD colocalization in the nucleus resulted in increased levels of nuclear PE, that acts as a signalling molecule in regulating several nuclear activities. By using a peptide array composed of 768-peptides derived from 11 SMAC-interacting proteins, we identified six nuclear proteins ARNT, BIRC2, MAML2, NR4A1, BIRC5 and HTRA2 Five of them also interacted with PSD through motifs that are not involved in SMAC binding. Synthetic peptides carrying the PSD-interacting motifs of these proteins could bind purified PSD and inhibit the PSD catalytic activity. When targeted specifically to the mitochondria or the nucleus, these synthetic peptides inhibited cancer cell proliferation. To our knowledge, these are the first reported inhibitors of PSD acting also as inhibitors of cancer cell proliferation. Altogether, we demonstrated that phospholipid metabolism and PE synthesis regulated by the SMAC-PSD interaction are essential for cancer cell proliferation and may be potentially targeted for treating cancer.


Subject(s)
Mitochondrial Proteins , Neoplasms , Apoptosis , Apoptosis Regulatory Proteins , Cell Proliferation , Humans , Intracellular Signaling Peptides and Proteins , Mitochondrial Proteins/metabolism , Phosphatidylethanolamines
14.
Drug Resist Updat ; 55: 100754, 2021 03.
Article in English | MEDLINE | ID: mdl-33691261

ABSTRACT

One of the primary causes of attenuated or loss of efficacy of cancer chemotherapy is the emergence of multidrug resistance (MDR). Numerous studies have been published regarding potential approaches to reverse resistance to taxanes, including paclitaxel (PTX) and docetaxel, which represent one of the most important classes of anticancer drugs. Since 1984, following the FDA approval of paclitaxel for the treatment of advanced ovarian carcinoma, taxanes have been extensively used as drugs that target tumor microtubules. Taxanes, have been shown to affect an array of oncogenic signaling pathways and have potent cytotoxic efficacy. However, the clinical success of these drugs has been restricted by the emergence of cancer cell resistance, primarily caused by the overexpression of MDR efflux transporters or by microtubule alterations. In vitro and in vivo studies indicate that the mechanisms underlying the resistance to PTX and docetaxel are primarily due to alterations in α-tubulin and ß-tubulin. Moreover, resistance to PTX and docetaxel results from: 1) alterations in microtubule-protein interactions, including microtubule-associated protein 4, stathmin, centriole, cilia, spindle-associated protein, and kinesins; 2) alterations in the expression and activity of multidrug efflux transporters of the ABC superfamily including P-glycoprotein (P-gp/ABCB1); 3) overexpression of anti-apoptotic proteins or inhibition of apoptotic proteins and tumor-suppressor proteins, as well as 4) modulation of signal transduction pathways associated with the activity of several cytokines, chemokines and transcription factors. In this review, we discuss the abovementioned molecular mechanisms and their role in mediating cancer chemoresistance to PTX and docetaxel. We provide a detailed analysis of both in vitro and in vivo experimental data and describe the application of these findings to therapeutic practice. The current review also discusses the efficacy of different pharmacological modulations to achieve reversal of PTX resistance. The therapeutic roles of several novel compounds, as well as herbal formulations, are also discussed. Among them, many structural derivatives had efficacy against the MDR phenotype by either suppressing MDR or increasing the cytotoxic efficacy compared to the parental drugs, or both. Natural products functioning as MDR chemosensitizers offer novel treatment strategies in patients with chemoresistant cancers by attenuating MDR and increasing chemotherapy efficacy. We broadly discuss the roles of inhibitors of P-gp and other efflux pumps, in the reversal of PTX and docetaxel resistance in cancer cells and the significance of using a nanomedicine delivery system in this context. Thus, a better understanding of the molecular mechanisms mediating the reversal of drug resistance, combined with drug efficacy and the application of target-based inhibition or specific drug delivery, could signal a new era in modern medicine that would limit the pathological consequences of MDR in cancer patients.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/physiology , Taxoids/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/drug effects , ATP Binding Cassette Transporter, Subfamily B, Member 1/physiology , Bridged-Ring Compounds , Cell Line, Tumor , Drug Carriers , Drug Resistance, Neoplasm/genetics , Genes, Tumor Suppressor/drug effects , Genes, Tumor Suppressor/physiology , Humans , Microtubules/physiology , Nanoparticles , Signal Transduction/drug effects , Signal Transduction/physiology , Tubulin/drug effects
15.
Environ Sci Process Impacts ; 22(7): 1540-1553, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32573620

ABSTRACT

In the last couple of decades, blending of oxygenated additives with gasoline has been advocated to reduce dependence on fossil fuels and to reduce hazardous health effects of gaseous emissions and particulate matter (PM) emitted by internal combustion (IC) engines in the transport sector worldwide. The primary objective of this research was to carry out a comparative analysis of exhaust PM emitted by gasohol (gasoline blended with 10% ethanol, v/v)-fulled spark ignition (SI) engine with that of baseline gasoline-fuelled SI engine. To assess the PM toxicity, physical, chemical and biological characterizations of PM were carried out using the state-of-the-art instruments and techniques. Measurements of regulated and unregulated gaseous species were also carried out at part/full loads. The results showed that the gasohol-fuelled engine emitted relatively lower concentrations of unregulated gaseous species such as sulfur dioxide (SO2), isocyanic acid (HNCO), etc. Physical characterization of exhaust particles revealed that the gasohol-fuelled engine emitted a significantly lower number of particles compared to the gasoline-fuelled engine. The presence of harmful polycyclic aromatic hydrocarbons (PAHs) and higher trace metal concentrations in PM emitted from the gasoline-fuelled engine was another important finding of this study. Biological characterizations showed that PM emitted from the gasohol-fuelled engine were less cytotoxic and had lower reactive oxygen species (ROS) generation potential. Mutagenicity of PM emitted from the gasohol-fuelled engine was also lower compared to that from the gasoline-fuelled engine. Overall, this study demonstrated that utilization of gasohol in SI engines led to the reduction in emissions, and lowering of PM toxicity, in addition to partial replacement of fossil fuels with renewable fuels.


Subject(s)
Air Pollutants , Gasoline , Vehicle Emissions , Ethanol , Gases , Particulate Matter
16.
Cells ; 9(2)2020 02 19.
Article in English | MEDLINE | ID: mdl-32093016

ABSTRACT

Diabetes mellitus is a metabolic disorder approaching epidemic proportions. Non-alcoholic fatty liver disease (NAFLD) regularly coexists with metabolic disorders, including type 2 diabetes, obesity, and cardiovascular disease. Recently, we demonstrated that the voltage-dependent anion channel 1 (VDAC1) is involved in NAFLD. VDAC1 is an outer mitochondria membrane protein that serves as a mitochondrial gatekeeper, controlling metabolic and energy homeostasis, as well as crosstalk between the mitochondria and the rest of the cell. It is also involved in mitochondria-mediated apoptosis. Here, we demonstrate that the VDAC1-based peptide, R-Tf-D-LP4, affects several parameters of a NAFLD mouse model in which administration of streptozotocin (STZ) and high-fat diet 32 (STZ/HFD-32) led to both type 2 diabetes (T2D) and NAFLD phenotypes. We focused on diabetes, showing that R-Tf-D-LP4 peptide treatment of STZ/HFD-32 fed mice restored the elevated blood glucose back to close to normal levels, and increased the number and average size of islets and their insulin content as compared to untreated controls. Similar results were obtained when staining the islets for glucose transporter type 2. In addition, the R-Tf-D-LP4 peptide decreased the elevated glucose levels in a mouse displaying obese, diabetic, and metabolic symptoms due to a mutation in the obese (ob) gene. To explore the cause of the peptide-induced improvement in the endocrine pancreas phenotype, we analyzed the expression levels of the proliferation marker, Ki-67, and found it to be increased in the islets of STZ/HFD-32 fed mice treated with the R-Tf-D-LP4 peptide. Moreover, peptide treatment of STZ/HFD-32 fed mice caused an increase in the expression of ß-cell maturation and differentiation PDX1 transcription factor that enhances the expression of the insulin-encoding gene, and is essential for islet development, function, proliferation, and maintenance of glucose homeostasis in the pancreas. This increase occurred mainly in the ß-cells, suggesting that the source of their increased number after R-Tf-D-LP4 peptide treatment was most likely due to ß-cell proliferation. These results suggest that the VDAC1-based R-Tf-D-LP4 peptide has potential as a treatment for diabetes.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Non-alcoholic Fatty Liver Disease/drug therapy , Peptides/therapeutic use , Voltage-Dependent Anion Channel 1/chemistry , 3T3-L1 Cells , Amino Acid Sequence , Animals , Blood Glucose/analysis , Blood Glucose/drug effects , Cell Proliferation/drug effects , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Type 2/chemically induced , Diet, High-Fat/adverse effects , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Ki-67 Antigen/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Non-alcoholic Fatty Liver Disease/chemically induced , Peptides/pharmacology , Streptozocin/adverse effects , Treatment Outcome , Voltage-Dependent Anion Channel 1/metabolism
17.
Parasitology ; 146(12): 1571-1577, 2019 10.
Article in English | MEDLINE | ID: mdl-31244453

ABSTRACT

Cerebral malaria (CM) is the severe neurological complication causing acute non-traumatic encephalopathy in tropical countries. The mechanisms underlying the fatal cerebral complications are still not fully understood. Glutamate, a major excitatory neurotransmitter in the central nervous system of the mammalian brain, plays a key role in the development of neuronal cells, motor function, synaptic plasticity, learning and memory processes under normal physiological conditions. The subtypes of ionotropic glutamate receptor are N-methyl-D-aspartate receptors (NMDARs) which are involved in cellular mechanisms of learning and memory, synaptic plasticity and also mediate excitotoxic neuronal injury. In the present study, we found that glutamate level in synaptosomes, as well as expression of NMDAR, was elevated during the extreme condition of CM in C57BL6 mice. Arteether at 50 mg kg-1 × 1, 25 mg kg-1 × 2, days decreased the NMDAR expression and increased the overall survival of the experimental CM mice.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Gene Expression/drug effects , Malaria, Cerebral/drug therapy , Receptors, N-Methyl-D-Aspartate/genetics , Animals , Female , Longevity/drug effects , Mice , Mice, Inbred C57BL
18.
Environ Sci Technol ; 52(24): 14496-14507, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30512948

ABSTRACT

Biodiesel engines produce several intermediate species, which can potentially harm the human health. The concentration of these species and their health risk potential varies depending on engine technology, fuel, and engine operating condition. In this study, experiments were performed on a large number of engines having different configurations (emissions norms/fuel used), which were operated at part load/full load using B20 (20% v/v biodiesel blended with mineral diesel) and mineral diesel. Experiments included measurement of gaseous emissions, and physical, chemical, and biological characterization of exhaust particulate matter (PM). Chemical characterization of PM was carried out for detecting polycyclic aromatic hydrocarbons (PAH's) and PM bound trace metals. The biological toxicity associated with PM was assessed using human embryonic kidney 293T cells (HEK 293T). The mutagenic potential of the PM was tested at three different concentrations (500, 100, and 50 µg/mL) using two different  Salmonella strains, TA98 and TA100, with and without liver S9 metabolic enzyme fraction. PM samples exhibited cytotoxic effect on HEK 293T cells (IC50 < 100 µg/mL) and there was significant potential for reactive oxygen species (ROS) generation. Comparison of different engines showed that modern engines (Euro-III and Euro-IV compliant) produced relatively cleaner exhaust compared to older engines (Euro-II compliant). Biodiesel-fueled engines emitted lower number of particles compared to diesel-fueled engines. However, chemical characterization revealed that biodiesel-fueled engines exhaust PM contained several harmful PAHs and trace metals, which affected the biological activity of these PM, as reflected in the biological investigations. Mutagenicity and cytotoxicity of PM from biodiesel-fueled engines were relatively higher compared to their diesel counterparts, indicating the need for exhaust gas after-treatment.


Subject(s)
Air Pollutants , Particulate Matter , Biofuels , Gasoline , Humans , Mutagens , Vehicle Emissions
19.
Environ Pollut ; 239: 499-511, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29684877

ABSTRACT

Despite intensive research carried out on particulates, correlation between engine-out particulate emissions and adverse health effects is not well understood yet. Particulate emissions hold enormous significance for mega-cities like Delhi that have immense traffic diversity. Entire public transportation system involving taxis, three-wheelers, and buses has been switched from conventional liquid fuels to compressed natural gas (CNG) in the Mega-city of Delhi. In this study, the particulate characterization was carried out on variety of engines including three diesel engines complying with Euro-II, Euro-III and Euro-IV emission norms, one Euro-II gasoline engine and one Euro-IV CNG engine. Physical, chemical and biological characterizations of particulates were performed to assess the particulate toxicity. The mutagenic potential of particulate samples was investigated at different concentrations using two different Salmonella strains, TA98 and TA100 in presence and absence of liver S9 metabolic enzyme fraction. Particulates emitted from diesel and gasoline engines showed higher mutagenicity, while those from CNG engine showed negligible mutagenicity compared to other test fuels and engine configurations. Polycyclic aromatic hydrocarbons (PAHs) adsorbed onto CNG engine particulates were also relatively fewer compared to those from equivalent diesel and gasoline engines. Taken together, our findings indicate that CNG is comparatively safer fuel compared to diesel and gasoline and can offer a cleaner transport energy solution for mega-cities with mixed-traffic conditions, especially in developing countries.


Subject(s)
Air Pollutants/toxicity , Natural Gas/toxicity , Toxicity Tests , Vehicle Emissions/toxicity , Air Pollutants/analysis , Cities , Gasoline/analysis , Motor Vehicles , Mutagenicity Tests , Mutagens , Polycyclic Aromatic Hydrocarbons/analysis , Salmonella , Vehicle Emissions/analysis
20.
Neoplasia ; 19(4): 333-345, 2017 04.
Article in English | MEDLINE | ID: mdl-28319807

ABSTRACT

Androgen deprivation therapy (ADT) is the most preferred treatment for men with metastatic prostate cancer (PCa). However, the disease eventually progresses and develops resistance to ADT in majority of the patients, leading to the emergence of metastatic castration-resistant prostate cancer (mCRPC). Here, we assessed artesunate (AS), an artemisinin derivative, for its anticancer properties and ability to alleviate resistance to androgen receptor (AR) antagonists. We have shown AS in combination with bicalutamide (Bic) attenuates the oncogenic properties of the castrate-resistant (PC3, 22RV1) and androgen-responsive (LNCaP) PCa cells. Mechanistically, AS and Bic combination inhibits nuclear factor (NF)-κB signaling and decreases AR and/or AR-variant 7 expression via ubiquitin-mediated proteasomal degradation. The combination induces oxidative stress and apoptosis via survivin downregulation and caspase-3 activation, resulting in poly-ADP-ribose polymerase (PARP) cleavage. Moreover, preclinical castrate-resistant PC3 xenograft studies in NOD/SCID mice (n =28, seven per group) show remarkable tumor regression and significant reduction in lungs and bone metastases upon administering AS (50 mg/kg per day in two divided doses) and Bic (50 mg/kg per day) via oral gavage. Taken together, we for the first time provide a compelling preclinical rationale that AS could disrupt AR antagonist-mediated resistance observed in mCRPC. The current study also indicates that the therapeutic combination of Food and Drug Administration-approved AS or NF-κB inhibitors and AR antagonists may enhance the clinical efficacy in the treatment of mCRPC patients.


Subject(s)
Androgen Receptor Antagonists/pharmacology , Antineoplastic Agents/pharmacology , Artemisinins/pharmacology , Drug Resistance, Neoplasm , NF-kappa B/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Signal Transduction/drug effects , Animals , Apoptosis/drug effects , Artesunate , Caspase 3/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Humans , Male , Mice , Neoplasm Metastasis , Oxidative Stress , Phosphorylation , Poly(ADP-ribose) Polymerases/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/pathology , Proteolysis , Tumor Burden , Ubiquitin/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...