Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Nanoscale ; 16(22): 10578-10583, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38767416

ABSTRACT

Supported lipid membranes are an important model system to study the phase separation behavior at the nanoscale. However, the conventional nanoanalytical tools often fail to provide reliable chemical characterization of the phase separated domains in a non-destructive and label-free manner. This study demonstrates the application of scanning tunneling microscopy-based tip-enhanced Raman spectroscopy (TERS) to study the nanoscale phase separation in supported d62-DPPC : DOPC lipid monolayers. Hyperspectral TERS imaging successfully revealed a clear segregation of the d62-DPPC-rich and DOPC-rich domains. Interestingly, nanoscale deposits of d62-DPPC were observed inside the DOPC-rich domains and vice versa. High-resolution TERS imaging also revealed the presence of a 40-120 nm wide interfacial region between the d62-DPPC-rich and DOPC-rich domains signifying a smooth transition rather than a sharp boundary between them. The novel insights obtained in this study demonstrate the effectiveness of TERS in studying binary lipid monolayers at the nanoscale.

2.
Anal Chem ; 95(23): 8869-8878, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37260258

ABSTRACT

Tip-enhanced Raman spectroscopy (TERS) has emerged as a powerful analytical tool for nondestructive and label-free molecular characterization at the nanoscale. However, the influence of environmental factors and sample characteristics on the occurrence of spurious signals, enhancement of TERS signals, and longevity of TERS probes is not well understood yet. Herein, we present a detailed investigation of the influence of oxygen, humidity, and atmospheric carbon contaminants on scanning tunneling microscopy-TERS (STM-TERS) measurements of self-assembled monolayer systems in ambient and inert environments. Our results reveal a consistent increase of TERS signals, significant reduction of spurious signals, and drastically improved longevity of TERS probes in the inert environment. Additionally, sample characteristics such as molecular packing, chemisorption behavior, and hydrophilicity are found to have a direct impact on signal enhancement in the TERS measurements of molecular self-assembled monolayers (SAMs). The novel insights gained in this study are expected to pave the way for a more robust data analysis and improved experimental design in the future gap mode STM- and atomic force microscopy-TERS (AFM-TERS) studies.

3.
Nano Lett ; 23(9): 3939-3946, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37096805

ABSTRACT

Noninvasive and label-free analysis of cell membranes at the nanoscale is essential to comprehend vital cellular processes. However, conventional analytical tools generally fail to meet this challenge due to the lack of required sensitivity and/or spatial resolution. Herein, we demonstrate that tip-enhanced Raman spectroscopy (TERS) is a powerful nanoanalytical tool to analyze dipalmitoylphosphatidylcholine (DPPC) bilayers and human cell membranes with submolecular resolution in the vertical direction. Unlike the far-field Raman measurements, TERS spectra of the DPPC bilayers reproducibly exhibited a uniquely shaped C-H band. These unique spectral features were also reproducibly observed in the TERS spectrum of human pancreatic cancer cells. Spectral deconvolution and DFT simulations confirmed that the TERS signal primarily originated from vibrations of the CH3 groups in the choline headgroup of the lipids. The reproducible TERS results obtained in this study unequivocally demonstrate the ultrahigh sensitivity of TERS for nanoanalysis of lipid membranes under ambient conditions.


Subject(s)
Spectrum Analysis, Raman , Humans , Spectrum Analysis, Raman/methods , Cell Membrane , Membranes
4.
Nanoscale ; 15(3): 963-974, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36541047

ABSTRACT

Two-dimensional (2D) molecular materials have attracted immense attention due to their unique properties, promising a wide range of exciting applications. To understand the structure-property relationship of these low-dimensional materials, sensitive analytical tools capable of providing structural and chemical characterisation at the nanoscale are required. However, most conventional analytical techniques fail to meet this challenge, especially in a label-free and non-destructive manner under ambient conditions. In the last two decades, tip-enhanced Raman spectroscopy (TERS) has emerged as a powerful analytical technique for nanoscale chemical characterisation by combining the high spatial resolution of scanning probe microscopy and the chemical sensitivity and specificity of surface-enhanced Raman spectroscopy. In this review article, we provide an overview of the application of TERS for nanoscale chemical analysis of 2D molecular materials, including 2D polymers, biomimetic lipid membranes, biological cell membranes, and 2D reactive systems. The progress in the structural and chemical characterisation of these 2D materials is demonstrated with key examples from our as well as other laboratories. We highlight the unique information that TERS can provide as well as point out the common pitfalls in experimental work and data interpretation and the possible ways of averting them.

5.
Catal Sci Technol ; 12(19): 5795-5801, 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36324827

ABSTRACT

The deactivation mechanism of the widely used zeolite ZSM-5 catalysts remains unclear to date due to the lack of analytical techniques with sufficient sensitivity and/or spatial resolution. Herein, a combination of hyperspectral confocal fluorescence microscopy (CFM) and tip-enhanced fluorescence (TEFL) microscopy is used to study the formation of different coke (precursor) species involved in the deactivation of zeolite ZSM-5 during the methanol-to-hydrocarbon (MTH) reaction. CFM submicron-scale imaging shows a preferential formation of graphite-like coke species at the edges of zeolite ZSM-5 crystals within 10 min of the MTH reaction (i.e., working catalyst), whilst the amount of graphite-like coke species uniformly increased over the entire zeolite ZSM-5 surface after 90 min (i.e., deactivated catalyst). Furthermore, TEFL nanoscale imaging with ∼35 nm spatial resolution revealed that formation of coke species on the zeolite ZSM-5 surface is non-uniform and a relatively larger amount of coke is formed at the crystal steps, indicating a higher initial catalytic activity.

6.
Angew Chem Int Ed Engl ; 60(35): 19041-19046, 2021 08 23.
Article in English | MEDLINE | ID: mdl-34170590

ABSTRACT

Visualizing the molecular organization of lipid membranes is essential to comprehend their biological functions. However, current analytical techniques fail to provide a non-destructive and label-free characterization of lipid films under ambient conditions at nanometer length scales. In this work, we demonstrate the capability of tip-enhanced Raman spectroscopy (TERS) to probe the molecular organization of supported DPPC monolayers on Au (111), prepared using the Langmuir-Blodgett (LB) technique. High-quality TERS spectra were obtained, that permitted a direct correlation of the topography of the lipid monolayer with its TERS image for the first time. Furthermore, hyperspectral TERS imaging revealed the presence of nanometer-sized holes within a continuous DPPC monolayer structure. This shows that a homogeneously transferred LB monolayer is heterogeneous at the nanoscale. Finally, the high sensitivity and spatial resolution down to 20 nm of TERS imaging enabled reproducible, hyperspectral visualization of molecular disorder in the DPPC monolayers, demonstrating that TERS is a promising nanoanalytical tool to investigate the molecular organization of lipid membranes.

7.
Chimia (Aarau) ; 73(6): 493-497, 2019 Jul 26.
Article in English | MEDLINE | ID: mdl-38549212

ABSTRACT

Two-dimensional polymers comprise a novel class of macromolecules with promising mechanical and chemical properties that have recently become accessible under mild synthetic conditions. As nanometer-sized holes and defects are likely to influence these materials' properties, there is a need for analytical methods to spatially and chemically characterize them down to the nanoscale. In this article, we compare tip-enhanced Raman spectroscopy to common methods in nanoanalysis for the investigation of defect sites in molecularly thin 2D-polymer sheets and briefly present measures to meet the challenges arising from tip-induced degradation processes.

SELECTION OF CITATIONS
SEARCH DETAIL