Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 250: 126066, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37544558

ABSTRACT

Nicotinate nucleotide adenylyltransferase (NNAT) has been a significant research focus on druggable targets, given its indispensability in the biosynthesis of NAD+, which is crucial to the survival of bacterial pathogens. However, no information is available on the structure-function of Enterococcus faecium NNAT (EfNNAT). This study established the expression and purification protocol for obtaining a high-yield recombinant EfNNAT using the E. coli expression system and a single-step IMAC purification method. Approximately 101 mg of EfNNAT was obtained per 7.8 g of wet E. coli cells, estimated to be over 98 % pure. We further characterized the biophysical structure and determined the three-dimensional structure of the EfNNAT. Biophysical studies revealed a dimeric protein with a higher α-helical composition. The highly stable protein crystalizes in multiple conditions, yielding high-quality crystals diffracting between 1.78 and 2.80 Å. Two high-resolution crystal structures of EfNNAT in its native and adenine-bound forms were determined at 1.90 Å and 1.82 Å, respectively. The X-ray structures of the EfNNAT revealed the presence of phosphate and sulfate ions occupying and interacting with conserved amino acid residues within the putative substrate binding site, hence providing insight into the probable substrate preference of EfNNAT and, consequently, why EfNNAT may not prefer ß-nicotinamide mononucleotide as a substrate. With the accessibility to high-resolution structures of EfNNAT, further structural evaluation and drug-based screening can be achieved. Hence, we anticipate that this study will provide the basis for the discovery of structure-based inhibitors against this enzyme.

2.
Genes (Basel) ; 14(2)2023 02 20.
Article in English | MEDLINE | ID: mdl-36833460

ABSTRACT

Acquired immunodeficiency syndrome (AIDS) is one of the most challenging infectious diseases to treat on a global scale. Understanding the mechanisms underlying the development of drug resistance is necessary for novel therapeutics. HIV subtype C is known to harbor mutations at critical positions of HIV aspartic protease compared to HIV subtype B, which affects the binding affinity. Recently, a novel double-insertion mutation at codon 38 (L38HL) was characterized in HIV subtype C protease, whose effects on the interaction with protease inhibitors are hitherto unknown. In this study, the potential of L38HL double-insertion in HIV subtype C protease to induce a drug resistance phenotype towards the protease inhibitor, Saquinavir (SQV), was probed using various computational techniques, such as molecular dynamics simulations, binding free energy calculations, local conformational changes and principal component analysis. The results indicate that the L38HL mutation exhibits an increase in flexibility at the hinge and flap regions with a decrease in the binding affinity of SQV in comparison with wild-type HIV protease C. Further, we observed a wide opening at the binding site in the L38HL variant due to an alteration in flap dynamics, leading to a decrease in interactions with the binding site of the mutant protease. It is supported by an altered direction of motion of flap residues in the L38HL variant compared with the wild-type. These results provide deep insights into understanding the potential drug resistance phenotype in infected individuals.


Subject(s)
HIV Infections , HIV Protease Inhibitors , HIV-1 , Humans , Saquinavir/chemistry , Saquinavir/pharmacology , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacology , HIV-1/genetics , HIV Protease/genetics , Drug Resistance, Viral/genetics
3.
Int J Biol Macromol ; 217: 27-41, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-35817239

ABSTRACT

The global HIV/AIDS epidemic still currently affects approximately 38 million individuals globally. The protease enzyme of the human immunodeficiency virus is a major drug target in antiviral therapy, however, under the influence of reverse transcriptase and in the context of drug pressure, the rapid PR mutation rate contributes significantly to clinical failure. The set of cooperative non-active site mutations, I13V/I62V/V77I, have been associated with reduced inhibitor susceptibility and are the focus of the current study. When compared to the wild-type protease the mutant protease exhibited decreased binding affinities towards ATV and DRV by 64- and 12-fold, respectively, and decreased the overall favourable Gibbs free energy for ATV, DRV, RTV and SQV. Moreover, these mutations decreased the thermal stability of the protease when in complex with ATV and DRV by approximately 6.4 and 4.2 °C, respectively. The crystal structure of the mutant protease revealed that the location of these mutations and their effect on the hydrophobic sliding mechanism may be crucial in their role in resistance.


Subject(s)
HIV Protease Inhibitors , HIV Protease , Drug Resistance, Viral/genetics , HIV Protease/chemistry , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacology , Humans , Hydrophobic and Hydrophilic Interactions , Mutation
4.
Mol Biochem Parasitol ; 240: 111319, 2020 11.
Article in English | MEDLINE | ID: mdl-32961204

ABSTRACT

Schistosoma japonicum glutathione transferase (Sj26GST), an enzyme central to detoxification of electrophilic compounds in the parasite, is upregulated in response to drug treatment. Therefore, Sj26GST may serve as a potential therapeutic target for the treatment of schistosomiasis. Herewith, we describe the structural basis of inhibition of Sj26GST by ellagic acid (EA). Using 1-chloro-2,4-dinitrobenzene and reduced glutathione (GSH) as Sj26GST substrates, EA was shown to inhibit Sj26GST activity by 66 % with an IC50 of 2.4 µM. Fluorescence spectroscopy showed that EA altered the polarity of the environment of intrinsic tryptophan and that EA decreased (in a dose-dependent manner) the interaction between Sj26GST and 8-Anilino-1-naphthalenesulfonate (ANS), which is a known GST H-site ligand. Thermodynamic studies indicated that the interaction between Sj26GST and EA is spontaneous (ΔG = -29.88 ± 0.07 kJ/mol), enthalpically-driven (ΔH = -9.48 ± 0.42 kJ/mol) with a favourable entropic change (ΔS = 20.40 ± 0.08 kJ/mol/K), and with a stoichiometry of four EA molecules bound per Sj26GST dimer. The 1.53 Å-resolution Sj26GST crystal structure (P 21 21 21 space group) complexed with GSH and EA shows that EA binds primarily at the dimer interface, stabilised largely by Van der Waal forces and H-bonding. Besides, EA bound near the H-site and less than 3.5 Å from the ε-NH2 of the γ-glutamyl moiety of GSH, in each subunit.


Subject(s)
Enzyme Inhibitors/chemistry , Glutathione Transferase/chemistry , Helminth Proteins/chemistry , Schistosoma japonicum/enzymology , Animals , Calorimetry , Chemical Phenomena , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Glutathione Transferase/antagonists & inhibitors , Helminth Proteins/antagonists & inhibitors , Kinetics , Ligands , Models, Molecular , Molecular Conformation , Molecular Structure , Protein Binding , Schistosoma japonicum/drug effects , Structure-Activity Relationship , Thermodynamics
5.
FEBS Lett ; 589(1): 117-22, 2015 Jan 02.
Article in English | MEDLINE | ID: mdl-25436419

ABSTRACT

In many microorganisms, carbohydrate acetylesterases remove the acetyl groups from various types of carbohydrates. Sm23 from Sinorhizobium meliloti is a putative member of carbohydrate esterase family 3 (CE3) in the CAZy classification system. Here, we determined the crystal structure of Sm23 at 1.75 Å resolution and investigated functional properties using biochemical methods. Furthermore, immobilized Sm23 exhibited improved stability compared with soluble Sm23, which can be used for the design of plant cell wall degrading-systems.


Subject(s)
Acetylesterase/chemistry , Bacterial Proteins/chemistry , Sinorhizobium meliloti/enzymology , Acetylesterase/genetics , Acetylesterase/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Crystallography, X-Ray , Enzyme Stability , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/genetics , Enzymes, Immobilized/metabolism , Sinorhizobium meliloti/genetics
6.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 4): 473-5, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24699742

ABSTRACT

With increasing demand in biotechnological applications, the identification and characterization of novel lipolytic enzymes are of great importance. The crystallization and preliminary X-ray crystallographic study of a novel type of hydrolase from Bacillus licheniformis (BL28) are described here. Recombinant BL28 protein containing a C-terminal His tag was overproduced in Escherichia coli and purified to homogeneity. BL28 was crystallized using 0.2 M ammonium acetate, 0.1 M sodium citrate tribasic dihydrate pH 5.6, 30%(w/v) PEG 4000 as a crystallizing solution. X-ray diffraction data were collected to a resolution of 1.67 Šwith an Rmerge of 5.8%. The BL28 crystals belonged to the tetragonal space group P41212, with unit-cell parameters a = b = 57.89, c = 167.25 Å. A molecular-replacement solution was obtained and structure refinement of BL28 is in progress.


Subject(s)
Bacillus/enzymology , Crystallization/methods , Crystallography, X-Ray/methods , Hydrolases/chemistry , Lipolysis , Recombinant Proteins/chemistry , Hydrolases/genetics , Hydrolases/metabolism , Recombinant Proteins/genetics
7.
Biochem Biophys Res Commun ; 447(1): 101-7, 2014 Apr 25.
Article in English | MEDLINE | ID: mdl-24704201

ABSTRACT

The peptidases in clan MH are known as cocatalytic zinc peptidases that have two zinc ions in the active site, but their metal preference has not been rigorously investigated. In this study, the molecular basis for metal preference is provided from the structural and biochemical analyses. Kinetic studies of Pseudomonas aeruginosa aspartyl aminopeptidase (PaAP) which belongs to peptidase family M18 in clan MH revealed that its peptidase activity is dependent on Co(2+) rather than Zn(2+): the kcat (s(-1)) values of PaAP were 0.006, 5.10 and 0.43 in no-metal, Co(2+), and Zn(2+)conditions, respectively. Consistently, addition of low concentrations of Co(2+) to PaAP previously saturated with Zn(2+) greatly enhanced the enzymatic activity, suggesting that Co(2+)may be the physiologically relevant cocatalytic metal ion of PaAP. The crystal structures of PaAP complexes with Co(2+) or Zn(2+) commonly showed two metal ions in the active site coordinated with three conserved residues and a bicarbonate ion in a tetragonal geometry. However, Co(2+)- and Zn(2+)-bound structures showed no noticeable alterations relevant to differential effects of metal species, except the relative orientation of Glu-265, a general base in the active site. The characterization of mutant PaAP revealed that the first metal binding site is primarily responsible for metal preference. Similar to PaAP, Streptococcus pneumonia glutamyl aminopeptidase (SpGP), belonging to aminopeptidase family M42 in clan MH, also showed requirement for Co(2+) for maximum activity. These results proposed that clan MH peptidases might be a cocatalytic cobalt peptidase rather than a zinc-dependent peptidase.


Subject(s)
Cobalt , Glutamyl Aminopeptidase/metabolism , Animals , Catalytic Domain , Cattle , Cobalt/pharmacology , Glutamyl Aminopeptidase/chemistry , Glutamyl Aminopeptidase/genetics , Humans , Kinetics , Metals/chemistry , Models, Molecular , Pseudomonas aeruginosa/enzymology , Streptococcus pneumoniae/enzymology , Substrate Specificity , Zinc/pharmacology
8.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 2): 193-5, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24637754

ABSTRACT

The SGNH hydrolase family includes enzymes that catalyze the hydrolysis of a broad range of substrates. Here, the crystallization and preliminary X-ray crystallographic studies of a novel SGNH hydrolase (Est24) from Sinorhizobium meliloti were performed. Recombinant Est24 protein containing an N-terminal His tag was expressed in Escherichia coli and purified to homogeneity. Est24 was then crystallized using a solution consisting of 0.2 M ammonium phosphate pH 4.6, 20% polyethylene glycol 3350. X-ray diffraction data were collected to a resolution of 1.45 Å with an R(merge) of 9.4%. The Est24 crystals belonged to space group C2, with unit-cell parameters a = 129.09, b = 88.63, c = 86.15 Å, α = 90.00, ß = 114.30, γ = 90.00°. A molecular-replacement solution was obtained using the crystal structure of Mycobacterium smegmatis arylesterase as a template and structure refinement of Est24 is in progress.


Subject(s)
Crystallography, X-Ray/methods , Hydrolases/chemistry , Sinorhizobium meliloti/enzymology , Crystallization , Enzyme Stability , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...