Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Funct Integr Genomics ; 23(4): 302, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37721631

ABSTRACT

Women's most frequent type of cancer is breast cancer, second only to lung cancer. This paper summarizes changes in genomics and epigenetics and incremental biological activities. A tumour develops through a series of phases involving a separate abnormal gene. Even though many diseases cause DNA mutations, most treatments are designed to relieve symptoms rather than change the DNA. Clustering short palindromic repeats (CRISPR) or Cas9 is the primary approach for discovering and confirming tumorigenic genomic targets. A Kohonen neural network with an expression programming model was developed for gene selection. The main problem in genetic selection is reducing the number of features chosen while maintaining accuracy. This purpose is accomplished systematically. In the end, the approach method performed better than the existing quantum squirrel-inspired algorithm and the recurrent neural network oppositional call search algorithm for genetic selection. The KNNet-EPM model used an expression programming approach to identify gene biomarkers for breast cancer. This method was achieved with RAE of 42%, sensitivity of 93%, f1 score of 88%, accuracy of 98%, kappa score of 83%, specificity of 92% and MAE of 30%.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Female , Humans , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Artificial Intelligence , Algorithms , Carcinogenesis
2.
Cluster Comput ; : 1-13, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36034677

ABSTRACT

Patient health record analysis models assist the medical field to understand the current stands and medical needs. Similarly, collecting and analyzing the disease features are the best practice for encouraging medical researchers to understand the research problems. Various research works evolve the way of medical data analysis schemes to know the actual challenges against the diseases. The computer-based diagnosis models and medical data analysis models are widely applied to have a better understanding of different diseases. Particularly, the field of medical electronics needs appropriate health indicator extraction models in near future. The existing medical schemes support baseline solutions but lack optimal hypothesis-based solutions. This work describes the optimal hypothesis model and Akin procedures for health record users, to aid health sectors in clinical decision-making on health indications. This work proposes Medical Hypothesis and Health Indicators Extraction from Electronic Medical Records (EMR) and International Classification of Diseases (ICD-10) patient examination database using the Akin Method and Friendship method. In this Health Indicators and Disease Symptoms Extraction (HIDSE), the evidence checking procedures find and collect all possible medical evidence from the existing patient examination report. Akin Method is making the hypothesis decision from count-based evidence principles. The health indicators extraction scheme extracts all relevant information based on the health indicators query and partial input. Similarly, the friendship method is used for making information associations between medical data attributes. This Akin-Friendship model helps to build hypothesis structures and trait-based feature extraction principles. This is called as Composite Akin Friendship Model (CAFM). This proposed model consists of various test cases for developing the medical hypothesis systems. On the other hand, it provides limited accuracy in disease classification. In this regard, the proposed HIDSE implements Deep Learning (DL) based Akin Friendship Method (DLAFM) for improving the accuracy of this medical hypothesis model. The proposed DLAFM, Convolutional Neural Networks (CNN) associated Legacy Prediction Model for Health Indicator (LPHI) is developed to tune the CAFM principles. The results show the proposed health indicator extraction scheme has 8-10% of better system performance than other existing techniques.

3.
Comput Intell Neurosci ; 2022: 6671234, 2022.
Article in English | MEDLINE | ID: mdl-35571726

ABSTRACT

Purpose: The need for computerized medical assistance for accurate detection of brain hemorrhage from Computer Tomography (CT) images is more mandatory than conventional clinical tests. Recent technologies and advanced computerized algorithms follow Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) techniques to improve medical diagnosis platforms. This technology is making the diagnosis practice of brain issues easier for medical practitioners to analyze and identify diseases with an assured degree of precision and performance. Methods: As the existing CT image analysis models use standard procedures to detect hemorrhages, the need for DL-based data analysis is essential to provide more accurate results. Generally, the existing techniques are limited with image training efficiency, image filtering procedures, and runtime system tuning modules. On the scope, this work develops a DL-based automated analysis of CT scan slices to find various levels of brain hemorrhages. Notably, this proposed system integrates Convolutional Neural Network (CNN) and Generative Adversarial Network (GAN) architectures as Integrated Generative Adversarial-Convolutional Imaging Model (IGACM) for extracting the CT image features for detecting brain hemorrhages. Results: This system produces good results and takes lesser training time than existing techniques. This proposed system effectively works over CT images and classifies the abnormalities with more accuracy than current techniques. The experiments and results deliver the optimal detection of hemorrhages with better accuracy. It shows that the proposed system works with 5% to 10% of the better performance compared to other diagnostic techniques. Conclusion: The complex nature of CT images leads to noncorrelated feature complexities in diagnosis models. Considering the issue, the proposed system used GAN-based effective sampling techniques for enriching complex image samples into CNN training phases. This concludes the effective contribution of the proposed IGACM technique for detecting brain hemorrhages than the existing diagnosis models.


Subject(s)
Artificial Intelligence , Neural Networks, Computer , Computers , Humans , Image Processing, Computer-Assisted/methods , Intracranial Hemorrhages/diagnostic imaging , Tomography, X-Ray Computed/methods
4.
Comput Intell Neurosci ; 2022: 9441357, 2022.
Article in English | MEDLINE | ID: mdl-35281186

ABSTRACT

In the present medical age, the focus on prevention and prediction is achieved using the medical internet of things. With a broad and complete framework, effective behavioral, environmental, and physiological criteria are necessary to govern the major healthcare sectors. Wearables play an essential role in personal health monitoring data measurement and processing. We wish to design a variable and flexible frame for broad parameter monitoring in accordance with the convenient mode of wearability. In this study, an innovative prototype with a handle and a modular IoT portal is designed for environmental surveillance. The prototype examines the most significant parameters of the surroundings. This strategy allows a bidirectional link between end users and medicine via the IoT gateway as an intermediate portal for users with IoT servers in real time. In addition, the doctor may configure the necessary parameters of measurements via the IoT portal and switch the sensors on the wearables as a real-time observer for the patient. Thus, based on goal analysis, patient situation, specifications, and requests, medications may define setup criteria for calculation. With regard to privacy, power use, and computation delays, we established this system's performance link for three common IoT healthcare circumstances. The simulation results show that this technique may minimize processing time by 25.34%, save energy level up to 72.25%, and boost the privacy level of the IoT medical device to 17.25% compared to the benchmark system.


Subject(s)
Delivery of Health Care , Electrocardiography , Humans , Monitoring, Immunologic
5.
Comput Math Methods Med ; 2022: 7120983, 2022.
Article in English | MEDLINE | ID: mdl-35341015

ABSTRACT

Medical data processing is exponentially increasing day by day due to the frequent demand for many applications. Healthcare data is one such field, which is dynamically growing day by day. In today's scenario, an enormous amount of sensing devices and data collection units have been employed to generate and collect medical data all over the world. These healthcare devices will result in big real-time data streams. Hence, healthcare-based big data analytics and monitoring have gained hawk-eye importance but needs improvisation. Recently, machine and deep learning algorithms have gained importance to analyze huge amounts of medical data, extract the information, and even predict the future insights of diseases and also cope with the huge volume of data. But applying the learning models to handle big/medical data streams remains to be a challenge among the researchers. This paper proposes the novel deep learning electronic record search engine algorithm (ERSEA) along with firefly optimized long short-term memory (LSTM) model for better data analytics and monitoring. The experimentations have been carried out using Apache Spark using the different medical respiratory data. Finally, the proposed framework results are contrasted with existing models. It shows the accuracy, sensitivity, and specificity like 94%, 93.5%, and 94% for less than 5 GB dataset, and also, more than 5 GB it provides 94%, 92%, and 93% to prove the extraordinary performance of the proposed framework.


Subject(s)
Algorithms , Big Data , Delivery of Health Care , Forecasting , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...