Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Sci ; 33(4): e4962, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38501507

ABSTRACT

Insulin is commonly used to treat diabetes and undergoes aggregation at the site of repeated injections in diabetic patients. Moreover, aggregation is also observed during its industrial production and transport and should be avoided to preserve its bioavailability to correctly adjust glucose levels in diabetic patients. However, monitoring the effect of various parameters (pH, protein concentration, metal ions, etc.) on the insulin aggregation and oligomerization state is very challenging. In this work, we have applied a novel Surface Plasmon Resonance (SPR)-based experimental approach to insulin solutions at various experimental conditions, monitoring how its diffusion coefficient is affected by pH and the presence of metal ions (copper and zinc) with unprecedented sensitivity, precision, and reproducibility. The reported SPR method, hereby applied to a protein for the first time, besides giving insight into the insulin oligomerization and aggregation phenomena, proved to be very robust for determining the diffusion coefficient of any biomolecule. A theoretical background is given together with the software description, specially designed to fit the experimental data. This new way of applying SPR represents an innovation in the bio-sensing field and expanding the potentiality of commonly used SPR instruments well over the canonical investigation of biomolecular interactions.


Subject(s)
Biosensing Techniques , Diabetes Mellitus , Humans , Surface Plasmon Resonance/methods , Insulin/chemistry , Reproducibility of Results , Metals , Ions , Biosensing Techniques/methods
2.
Mol Aspects Med ; 94: 101226, 2023 12.
Article in English | MEDLINE | ID: mdl-37950974

ABSTRACT

Glaucoma represents a group of progressive neurodegenerative diseases characterized by the loss of retinal ganglion cells (RGCs) and their axons with subsequent visual field impairment. The disease develops through largely uncharacterized molecular mechanisms, that are likely to occur in different localized cell types, either in the anterior (e.g., trabecular meshwork cells) or posterior (e.g., Muller glia, retinal ganglion cells) segments of the eye. Genomic and preclinical studies suggest that glaucoma pathogenesis may develop through altered ubiquitin (Ub) signaling. Ubiquitin conjugation, referred to as ubiquitylation, is a major post-synthetic modification catalyzed by E1-E2-E3 enzymes, that profoundly regulates the turnover, trafficking and biological activity of the targeted protein. The development of new technologies, including proteomics workflows, allows the biology of ubiquitin signaling to be described in health and disease. This post-translational modification is emerging as a key role player in neurodegeneration, gaining relevance for novel therapeutic options, such as in the case of Proteolysis Targeting Chimeras technology. Although scientific evidence supports a link between Ub and glaucoma, their relationship is still not well-understood. Therefore, this review provides a detailed research-oriented discussion on current evidence of Ub signaling in glaucoma. A review of genomic and genetic data is provided followed by an in-depth discussion of experimental data on ASB10, parkin and optineurin, which are proteins that play a key role in Ub signaling and have been associated with glaucoma.


Subject(s)
Glaucoma , Ubiquitin , Humans , Ubiquitin/genetics , Ubiquitin/metabolism , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Glaucoma/genetics , Glaucoma/therapy , Molecular Biology
3.
Anal Bioanal Chem ; 415(10): 1829-1840, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36808276

ABSTRACT

The possibility to monitor peptide and protein aggregation is of paramount importance in the so-called conformational diseases, as the understanding of many physiological pathways, as well as pathological processes involved in the development of such diseases, depends very much on the actual possibility to monitor biomolecule oligomeric distribution and aggregation. In this work, we report a novel experimental method to monitor protein aggregation, based on the change of the fluorescent properties of carbon dots upon protein binding. The results obtained in the case of insulin with this newly proposed experimental approach are compared with those obtained with other common experimental techniques normally used for the same purpose (circular dichroism, DLS, PICUP and ThT fluorescence). The greatest advantage of the hereby presented methodology over all the other experimental methods considered is the possibility to monitor the initial stages of insulin aggregation under the different experimental conditions sampled and the absence of possible disturbances and/or molecular probes during the aggregation process.


Subject(s)
Insulin , Quantum Dots , Insulin/chemistry , Carbon/chemistry , Protein Aggregates , Quantum Dots/chemistry , Circular Dichroism , Fluorescent Dyes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...