Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 4703, 2017 07 05.
Article in English | MEDLINE | ID: mdl-28680157

ABSTRACT

Strong-field laser-matter interactions often lead to exotic chemical reactions. Trihydrogen cation formation from organic molecules is one such case that requires multiple bonds to break and form. We present evidence for the existence of two different reaction pathways for H3+ formation from organic molecules irradiated by a strong-field laser. Assignment of the two pathways was accomplished through analysis of femtosecond time-resolved strong-field ionization and photoion-photoion coincidence measurements carried out on methanol isotopomers, ethylene glycol, and acetone. Ab initio molecular dynamics simulations suggest the formation occurs via two steps: the initial formation of a neutral hydrogen molecule, followed by the abstraction of a proton from the remaining CHOH2+ fragment by the roaming H2 molecule. This reaction has similarities to the H2 + H2+ mechanism leading to formation of H3+ in the universe. These exotic chemical reaction mechanisms, involving roaming H2 molecules, are found to occur in the ~100 fs timescale. Roaming molecule reactions may help to explain unlikely chemical processes, involving dissociation and formation of multiple chemical bonds, occurring under strong laser fields.

2.
Opt Express ; 18(2): 732-9, 2010 Jan 18.
Article in English | MEDLINE | ID: mdl-20173893

ABSTRACT

We report line-by-line control of a coherent discrete spectrum (Raman sidebands) with a frequency spacing of 10.6 THz that is produced by an adiabatic Raman process. We show that the spectral phase of the Raman sidebands is finely controlled to the target (flat relative-spectral-phase). This is achieved by employing a combination of a spatial phase controller and a spectral interferometer, which are specifically designed for a high-power discrete spectrum. We also show that such spectral-phase control produces a train of Fourier transform limited pulses with an ultrahigh repetition rate of 10.6 THz in the time domain.


Subject(s)
Interferometry/instrumentation , Optical Devices , Refractometry/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Spectrum Analysis, Raman/instrumentation , Telecommunications/instrumentation , Equipment Design , Equipment Failure Analysis , Terahertz Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...