Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Physiol ; 237(7): 3095-3108, 2022 07.
Article in English | MEDLINE | ID: mdl-35621221

ABSTRACT

Endometriosis is a benign gynecological condition characterized by increased growth, inflammation, invasion, and angiogenesis, partly regulated by a class of enzymes called matrix metalloproteinases (MMPs). The importance of a few MMPs, e.g., MMP-9, -3, and -7 has been studied in endometriosis progression. Although MMP-13 plays an essential role in bone regeneration and cancer, no report has been found on the part of MMP-13 and endometriosis progression. We found the upregulation of MMP-13 expression and activity in patients having endometriosis in the eastern Indian population. In addition, the -77A/G polymorphism of the MMP13 promoter (rs: 2252070) is associated with regulating transcription and subsequent susceptibility to disease. In eastern Indian case-control groups, the effect of the -77A/G single-nucleotide polymorphism on MMP13 promoter activity and its relationship with endometriosis susceptibility was studied. The AG genotype was shown to be more predisposed to endometriosis risk than the GG genotype (p: 0.02; odds ratio [OR]: 1.65, 95% confidence interval [CI]: 1.10-2.49), also AG genotype was more frequent in late-stage patients compared to early-stage (p: 0.03, OR: 2.0, 95% CI: 1.09-3.66). Furthermore, the MMP13 gene levels were greater in AA compared to GG individuals. Additionally, MMP13 promoter-reporter experiments in cultured endometrial epithelial cells and in silico analyses both demonstrated increased transcriptional activity near the G to A transition under basal/IL-1ß -induced/c-FOS overexpressed condition. Overall, c-FOS tighter binding to the A allele-carrying promoter enhances MMP13 transcription, which is further amplified by IL-1ß due to increased c-FOS phosphorylation, promoting MMP-13 production and endometriosis risk.


Subject(s)
Endometriosis , Matrix Metalloproteinase 13/genetics , Alleles , Endometriosis/metabolism , Female , Genetic Predisposition to Disease , Humans , Interleukin-1beta/genetics , Matrix Metalloproteinases/genetics , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic , Proto-Oncogene Proteins c-fos/genetics
2.
Front Cell Dev Biol ; 9: 780510, 2021.
Article in English | MEDLINE | ID: mdl-34912809

ABSTRACT

Gynecological illness accounts for around 4.5% of the global disease burden, which is higher than other key global health concerns such as malaria (1.04%), TB (1.9%), ischemic heart disease (2.2%), and maternal disorders (3.5%). Gynecological conditions in women of reproductive age are linked to both in terms of diagnosis and treatment, especially in low-income economies, which poses a serious social problem. A greater understanding of health promotion and illness management can help to prevent diseases in gynecology. Due to the lack of established biomarkers, the identification of gynecological diseases, including malignancies, has proven to be challenging in most situations, and histological exams remain the gold standard. Metalloproteinases (MMPs, ADAMs, ADAMTSs) and their endogenous inhibitors (TIMPs) modulate the protease-dependent bioavailability of local niche components (e.g., growth factors), matrix turnover, and cellular interactions to govern specific physical and biochemical characteristics of the environment. Matrix metalloproteinases (MMPs), A Disintegrin and Metalloproteinase (ADAM), and A Disintegrin and Metalloproteinase with Thrombospondin Motif (ADAMTS) are zinc-dependent endopeptidases that contribute significantly to the disintegration of extracellular matrix proteins and shedding of membrane-bound receptor molecules in several diseases, including arthritis. MMPs are noteworthy genes associated with cancer development, functional angiogenesis, invasion, metastasis, and immune surveillance evasion. These genes are often elevated in cancer and multiple benign gynecological disorders like endometriosis, according to research. Migration through the extracellular matrix, which involves proteolytic activity, is an essential step in tumor cell extravasation and metastasis. However, none of the MMPs' expression patterns, as well as their diagnostic and prognostic potential, have been studied in a pan-cancer context. The latter plays a very important role in cell signaling and might be used as a cancer treatment target. ADAMs are implicated in tumor cell proliferation, angiogenesis, and metastasis. This review will focus on the contribution of the aforementioned metalloproteinases in regulating gynecological disorders and their subsequent manipulation for therapeutic intervention.

3.
Front Oncol ; 11: 720622, 2021.
Article in English | MEDLINE | ID: mdl-35145899

ABSTRACT

Gene expression can be regulated by small non-coding RNA molecules like microRNAs (miRNAs) which act as cellular mediators necessary for growth, differentiation, proliferation, apoptosis, and metabolism. miRNA deregulation is often observed in many human malignancies, acting both as tumor-promoting and suppressing, and their abnormal expression is linked to unrestrained cellular proliferation, metastasis, and perturbation in DNA damage as well as cell cycle. Matrix Metalloproteases (MMPs) have crucial roles in both growth, and tissue remodeling in normal conditions, as well as in promoting cancer development and metastasis. Herein, we outline an integrated interactive study involving various MMPs and miRNAs and also feature a way in which these communications impact malignant growth, movement, and metastasis. The present review emphasizes on important miRNAs that might impact gynecological cancer progression directly or indirectly via regulating MMPs. Additionally, we address the likely use of miRNA-mediated MMP regulation and their downstream signaling pathways towards the development of a potential treatment of gynecological cancers.

SELECTION OF CITATIONS
SEARCH DETAIL
...