Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 29(4): 6317-6333, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34453252

ABSTRACT

The current study was designed to assess the in vivo hepatoprotective properties of trans-Anethole, which is a principal aromatic component of star anise. The hepatoprotective effects of trans-Anethole were evaluated at three doses [40, 80, and 160 mg/kg body weight (b.wt.)] against carbon tetrachloride (CCl4)-induced hepatic damage in male Wistar rats for 4 weeks. Forty-two male Wistar rats were equally divided into seven groups; the control (group I) received only distilled water. Rats of group II received CCl4 (1 ml/kg b.wt.) in a 1:1 ratio of CCl4 and olive oil via intraperitoneal doses, while rats of group III received silymarin (50 mg/kg b.wt.), followed by CCl4 intraperitoneal doses, 3 days in a week. Rats of group IV received trans-anethole (160 mg/kg b.wt.) for 28 days as a negative control. Trans-anethole at the doses of 40, 80, and 160 mg/kg b.wt. was administered to groups V, VI, and VII, respectively, for 28 days, followed by CCl4 (i.p). Results showed that CCl4 treatment (group II) elevated the levels of different serum markers like aspartate aminotransferase (AST) by 4.74 fold, alanine aminotransferase (ALT) by 3.47 fold, aspartate alkaline phosphatase (ALP) by 3.55 fold, direct bilirubin by 3.48 fold, and total bilirubin by 2.38 fold in contrast to control. Furthermore, it was found that the decreased levels of liver antioxidant enzymes viz. catalase (CAT) and glutathione reductase (GR) were significantly modulated by the pre-administration of rats with different doses (40, 80, and 160 mg/kg b.wt.) of trans-anethole. Furthermore, pre-treatment of trans-anethole reduced the level of phase I enzymes and elevated the level of phase II detoxifying enzymes. Histopathological investigations showed that the treatment with trans-anethole was effective in ameliorating CCl4-induced liver injury and restored the normal hepatic architecture. Moreover, trans-anethole restored p53 and cyclin D levels in liver tissue relative to group II. Western blot analysis revealed that the trans-anethole treatment downregulated the expression of Bax and caspase-3 while upregulated the expression of Bcl-xL. Collectively, the findings of the study showed the strong efficacy of trans-anethole in ameliorating the hepatic damage caused by CCl4 through the modulation of antioxidants and xenobiotic-metabolizing enzymes.


Subject(s)
Chemical and Drug Induced Liver Injury , Allylbenzene Derivatives , Animals , Anisoles , Antioxidants/metabolism , Carbon Tetrachloride/toxicity , Chemical and Drug Induced Liver Injury/metabolism , Liver/metabolism , Male , Oxidative Stress , Plant Extracts/metabolism , Rats , Rats, Wistar
2.
J Biomol Struct Dyn ; 39(12): 4398-4414, 2021 Aug.
Article in English | MEDLINE | ID: mdl-32552396

ABSTRACT

Prompt and regioselective synthesis of eleven novel [1,2,4]triazolo[4,3-a]pyrimidines 2a-2k, via intramolecular oxidative-cyclization of 2-(2-arylidenehydrazinyl)-4-methyl-6-phenylpyrimidine derivatives 1a-1k has been demonstrated here using diacetoxy iodobenzene (DIB) as inexpensive and ecofriendly hypervalent iodine(III) reagent in CH2Cl2 at room temperature. Regiochemistry of final product has been established by developing single crystal and studied X-ray crystallographic data for two derivatives 2c and 2h without any ambiguity. These prominent [1,2,4]triazolo[4,3-a]pyrimidines were evaluated for human osteosarcoma bone cancer (MG-63) and breast cancer (MCF-7) cell lines using MTT assay to find potent antiproliferative agent and also on testicular germ cells to find potent apoptotic inducing activities. All compounds show significant cytotoxicity, particularly 3-(2,4-dichlorophenyl)-5-methyl-7-phenyl-[1,2,4]triazolo[4,3-a]pyrimidine (2g) was found significant apoptotic inducing molecule, as well as the most potent cytotoxic agent against bone cancer (MG-63) and breast cancer (MCF-7) cell lines with GI50 value 148.96 µM and 114.3 µM respectively. Molecular docking studies has been carried out to see the molecular interactions of synthesized compounds with the protein thymidylate synthase (PBD ID: 2G8D).Communicated by Ramaswamy H. Sarma.


Subject(s)
Antineoplastic Agents , Iodobenzenes , Antineoplastic Agents/pharmacology , Apoptosis , Drug Screening Assays, Antitumor , Humans , Iodobenzenes/pharmacology , Molecular Docking Simulation , Molecular Structure , Pyrimidines/pharmacology , Structure-Activity Relationship
3.
Nutr Cancer ; 73(9): 1727-1745, 2021.
Article in English | MEDLINE | ID: mdl-32781844

ABSTRACT

trans-Anethole, the major bioactive component of Illicium verum Hook. commonly known as star anise exhibits various pharmacological activities including anti-inflammatory, antimicrobial, insecticidal, and antitumor. Osteosarcoma is an extremely aggressive malignant bone tumor that affects children and young adults and accounts for around 60% of all sarcomas. The study was planned to evaluate the potential of trans-Anethole against Human osteosarcoma cell line MG-63. The antiproliferative activity of trans-Anethole was assessed by MTT assay. trans-Anethole exhibited apoptotic cell death as monitored by confocal/electron microscopy and flow cytometry studies. Modulation of gene expression was studied by Western blot and RT-PCR analysis. The present study revealed that trans-Anethole inhibited osteosarcoma proliferation in a dose-dependent manner with a GI50 value of 60.25 µM and showed pro-apoptotic activity as analyzed by Annexin V-FITC/PI assay. Flow cytometric analysis revealed that trans-Anethole induced cell cycle arrest at the G0/G1 phase with the generation of reactive oxygen species and reduction in mitochondrial membrane potential (ΔΨm). Immunoblotting results showed the increased expression of caspase-9/-3, p53, and decreased expression of Bcl-xL suggesting the involvement of the p53 and mitochondrial intrinsic pathway. This work provides a rationale that trans-Anethole might be considered as a promising chemotherapeutic/nutraceutical agent for the management of osteosarcoma.Highlightstrans-Anethole inhibited cell growth and caused G0/G1 arrest in Human osteosarcoma MG-63 cell line.trans-Anethole led to the loss of mitochondrial membrane permeability along with ROS generation.trans-Anethole upregulates the expression of p53, Caspase-9/-3, and downregulate Bcl-xL expression.


Subject(s)
Osteosarcoma , Allylbenzene Derivatives , Anisoles , Apoptosis , Cell Line, Tumor , Cell Proliferation , Humans , Membrane Potential, Mitochondrial , Osteosarcoma/drug therapy
4.
Environ Sci Pollut Res Int ; 28(12): 14983-15004, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33222070

ABSTRACT

Onosma bracteata Wall. (Boraginaceae), commonly known as "gaozaban" is a highly valuable medicinal herb, useful in the treatment of body swellings, abdominal pain, eye-related problems, fever, and urinary calculi. The present study was performed to investigate the antioxidant properties of extract/fractions, viz. ethanol (Obeth) extract, hexane (Obhex) fraction, chloroform (Obcl) fraction, ethyl acetate (Obea) fraction, butanol (Obbu) fraction, and aqueous (Obaq) fraction isolated from O. bracteata. Obea fraction showed stronger free radical quenching ability in various antioxidant assays, as compared to the other fractions. Obea fraction with effective free radical-scavenging properties was further evaluated for the antiproliferative activity against human osteosarcoma MG-63, human neuroblastoma IMR-32, and human lung cancer A549 cell lines using MTT assay. Obea fraction showed strong cytotoxicity with GI50 value of 88.56, 101.61, and 112.7 µg/ml towards MG-63, IMR-32, and A549 cells respectively. Mechanistic studies revealed that Obea fraction in osteosarcoma MG-63 cells increased reactive oxygen species (ROS) level and reduced mitochondrial membrane potential. In the presence of Obea, the cells were found to be arrested in the G0/G1 phase in a dose-dependent manner which is also confirmed by the enhancement in the early apoptotic cell population in flow cytometer analysis. Western blotting demonstrated the decrease in expression of p-NFκB, COX-2, p-Akt, and Bcl-xL, whereas upregulation was observed in the expression of GSK-3ß, p53, caspase-3, and caspase-9 proteins. RT-qPCR studies revealed downregulation of Bcl-2, cyclin E, CDK2, and mortalin gene expression and upregulation in the expression of p53 genes. The antioxidant and cytotoxic potential of Obea was attributed to the presence of catechin, kaempferol, onosmin A, and epicatechin, as revealed by HPLC analysis. This is the first report regarding the antiproliferative potential of O. bracteata against osteosarcoma.


Subject(s)
Boraginaceae , Osteosarcoma , Apoptosis , Cell Line, Tumor , Cyclin E , Glycogen Synthase Kinase 3 beta , Humans , Osteosarcoma/drug therapy , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-akt , Reactive Oxygen Species
5.
Environ Sci Pollut Res Int ; 28(6): 6619-6634, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33000335

ABSTRACT

The present study investigated the antimutagenic, antioxidant, and antiproliferative properties of extracts of Cassia fistula prepared by sequentially fractionation of 80% methanolic (CaLM extract) extract of C. fistula leaves, namely CaLH (hexane), CaLC (chloroform), CaLE (ethyl acetate), CaLB (n-butanol), and CaLA (aqueous) fractions. The antimutagenicity of the fractions was tested against mutagens viz. S9-independent, namely 4-nitro-o-phenylenediamine (TA98) and sodium azide (TA100) and S9-dependent, 2-AF (2-aminofluorene). Among the tested fractions, CaLE fraction showed a potent efficacy with an inhibition percentage of 85.57% (TA98) and 89.93% (TA100) against the mutagenicity induced by 2-aminofluorene. The CaLE fraction could significantly scavenge free radicals in various assays, namely DPPH, lipid peroxidation inhibition, and superoxide anion radical scavenging assays with an IC50 of 12.80, 144, and 257.3 µg/ml respectively. The antiproliferative potential of the effective CaLE fraction was assessed using MTT assay against HeLa and MCF-7 cancer cells with GI50 value of 243.4 and 324.6 µg/ml respectively. The fraction exhibited remarkable apoptosis-inducing effects through the externalization of phosphatidylserine in HeLa cells as analyzed by annexin V-FITC/PI double staining assay. The HPLC analysis of CaLE revealed the presence of catechin, epiafzelechin, and chlorogenic acid which are responsible for its antimutagenic and antiproliferative efficacy. Graphical abstract.


Subject(s)
Antimutagenic Agents , Breast Neoplasms , Cassia , Antioxidants , HeLa Cells , Humans , MCF-7 Cells , Mutagenicity Tests , Mutagens/toxicity , Plant Extracts/pharmacology , Salmonella typhimurium/genetics
6.
Front Pharmacol ; 11: 1301, 2020.
Article in English | MEDLINE | ID: mdl-32973525

ABSTRACT

Onosma bracteata Wall. (Boraginaceae) is a highly valuable medicinal herb that is used for the treatment of fever, bronchitis, asthma, rheumatism, stomach irritation, and other inflammatory disorders. The present study aims to explore the hepatoprotective potential of ethanolic extract (Obeth) from O. bracteata aerial parts against carbon tetrachloride (CCl4) which causes hepatic damage in the male Wistar rats. Obeth showed effective radical quenching activity with an EC50 of 115.14 and 199.33 µg/mL in superoxide radical scavenging and lipid peroxidation analyses respectively along with plasmid DNA protective potential in plasmid nicking assay. The Obeth modulated mutagenicity of 2 Aminofluorine (2AF) in the pre-incubation mode of investigation (EC50 10.48 µg/0.1 mL/plate) in TA100 strain of Salmonella typhimurium. In in vivo studies, pretreatment of Obeth (50, 100, and 200 mg/kg) had the potential to normalize the biochemical markers aggravated by CCl4 (1mL/kg b.wt.) including liver antioxidative enzymes. Histopathological analysis also revealed the restoration of CCl4-induced liver histopathological alterations. Immunohistochemical studies showed that the treatment of Obeth downregulated the expression levels of p53 and cyclin D in hepatocytes. and downregulation in the Western blotting analysis revealed the downregulation of p-NF-kB, COX-2, and p53. HPLC data analysis showed the supremacy of major compounds namely, catechin, kaempferol, epicatechin, and Onosmin A in Obeth. The present investigation establishes the hepatoprotective and chemopreventive potential of O. bracteata against CCl4-induced hepatotoxicity via antioxidant defense system and modulation of the expression of proteins associated with the process of carcinogenesis in hepatic cells.

7.
Environ Sci Pollut Res Int ; 27(25): 32017-32033, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32504442

ABSTRACT

The current study was performed to evaluate the antiproliferative and apoptosis-inducing potential of n-hexane fraction from Cassia fistula L. (Caesalpinioideae) fruits. The antiproliferative property of the fraction was determined by MTT assay against cancer cell lines including HeLa, MG-63, IMR-32, and PC-3 with GI50 value of 97.69, 155.2, 143, and 160.2 µg/ml respectively. The fraction was further explored for its apoptotic effect using confocal, SEM, and flow cytometry studies in HeLa cells. It was observed that the treatment of fraction revealed fragmentation of DNA, chromatin condensation, membrane blebbing, and formation of apoptotic bodies in a dose-dependent manner. The fraction also showed a remarkable increase in the level of ROS, mitochondrial depolarization and G0/G1 phase cell cycle arrest, and induction in the phosphatidylserine externalization analyzed using Annexin V-FITC/PI double staining assay in HeLa cells. Kaempferol, Ellagic acid, and Epicatechin are the major phytoconstituents present in the fraction as revealed by the HPLC. The treatment of n-hexane fraction showed downregulation in the gene expression of Bcl-2 and upregulation in the expression level of p53, Bad, and caspase-3 genes analyzed using semi-quantitative RT-PCR in HeLa cells. These results suggest that n-hexane fraction from C. fistula inhibited the proliferation of cervical cancer cells efficiently by the induction of apoptosis. Graphical abstract.


Subject(s)
Cassia , Uterine Cervical Neoplasms , Apoptosis , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Proliferation , Female , HeLa Cells , Hexanes , Humans , Membrane Potential, Mitochondrial
8.
EXCLI J ; 15: 842-857, 2016.
Article in English | MEDLINE | ID: mdl-28337113

ABSTRACT

From the centuries, Lawsonia inermis L. (Henna) is utilized in traditional health care system as a medicinal and cosmetic agent. The present study was intended to assess antiradical, DNA protective and antiproliferative activity of water extract of Lawsonia inermis L. leaves (W-LI). Antioxidant activity was estimated using various in vitro assays such as DPPH, ABTS, superoxide anion radical scavenging, FRAP, deoxyribose degradation and DNA protection assay. Growth inhibitory effects of W-LI were assessed using MTT assay against different cancer cell lines viz. HeLa, MCF-7, A549, C6 and COLO-205. From the results of antioxidant assays, it was found that W-LI quenched DPPH and ABTS cation radicals with IC50 value of 352.77 µg/ml and 380.87 µg/ml respectively. It demonstrated hydroxyl radical scavenging potential of 59.75 % at highest test dose of 1000 µg/ml in deoxyribose degradation assay. The results of FRAP assay showed that W-LI also possesses significant reducing activity. Extract inhibited hydroxyl radical induced pBR322 plasmid DNA strand scission, thus conferring DNA protection. Growth inhibition of various cancer cell lines was achieved to the varying extent on treatment with W-LI. Further, it was observed that activity was quite promising against colon cancer COLO-205 cells (GI50 121.03 µg/ml). HPLC profiling of W-LI revealed the presence of different polyphenolic compounds such as ellagic acid, catechin, quercetin, kaempferol etc. which might be contributing towards antioxidant and cytotoxic activity. The present study demonstrated that polyphenols rich W-LI extract from leaves of L. inermis possesses ability to inhibit oxidative radicals and cancer cells proliferation.

SELECTION OF CITATIONS
SEARCH DETAIL
...