Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J Hazard Mater ; 386: 121664, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31791859

ABSTRACT

The presence of hazardous jarosites causes a serious environmental problems, releasing potentially toxic elements, principally heavy metals such as Pb, As, Tl, Cr among others to the environment. Thus, the dissolution process of jarosites has to be monitored to assess the environmental impact. In the present work, the different hazardous jarosites were prepared, and characterized by analytical techniques (XRD, SEM, EDS, etc.), and the composition of jarosites was determined by induction-coupled plasma spectroscopy (ICP). Shrinking core kinetic model (SCKM) was employed to understand the stability of hazardous jarosites, studying a complete kinetic analysis of the jarosite dissolution process under different conditions (temperatures and pH). The results show that temperature has the highest effect on stability followed by pH, requiring extreme parameters for high dissolution. The batch experiments show that the results are in good agreement with the SCKM forming a solid layer as by-products. The chemical reaction, i.e. dissolution process performs through mostly controlling stage at extreme pH values and then moved to mass transport in the fluid layer. After analyzing the results, a kinetic equation has been proposed to describe adequately the dissolution process, and it predicts the lifetime of the hazardous jarosites.

2.
Molecules ; 24(5)2019 Feb 28.
Article in English | MEDLINE | ID: mdl-30823371

ABSTRACT

In this work, two oligophenyleneimines type pentamers with terminal aldehydes, designated as DAFCHO (4,4'-((((((2,5-bis(octyloxy)-1,4-phenylene)bis(methanylylidene))bis(azanyl ylidene))bis(9H-fluorene-7,2-diyl))bis(azanylylidene))bis(methanylylidene))bis(2,5-bis(octyloxy) benzaldehyde)) and FDACHO (4,4'-((((((2,5-bis(octyloxy)-1,4-phenylene)bis(methanylylidene))bis (azanylylidene))bis(4,1-phenylene))bis(azanylylidene))bis(methanylylidene))bis(2,5-bis(octyloxy) benzaldehyde)) were synthesized by mechanochemistry method using 2,5-bis(octyloxy) terephtal aldehyde and 2,7-diaminofluorene or 1,4-phenylenediamine. All compounds were spectroscopically characterized using ¹H and 13C-NMR, FT-IR and mass spectrometry MALDITOF. The optical properties of the compounds were analyzed by UV-vis spectroscopy using different solvents. We observed that DAFCHO and FDACHO exhibit interesting photochromic properties when they are dissolved in chloroform and exposed to sunlight for 3, 5 and 10 min. The value of the energy band gap was calculated from the absorption spectra without irradiation Egap(optical). It was 2.50 eV for DAFCHO in chloroform solution, and it decreased to 2.34 eV when it is in films. For FDACHO, it was 2.41 eV in solution and 2.27 eV in film. HOMO (Highest Occupied Molecular Orbital), LUMO (Lowest Unoccupied Molecular Orbital) and Egap(electrochemical) values were obtained by electrochemical studies. The results indicate that the compounds can be considered as organic semiconductors since their values are 2.35 eV for DAFCHO and 2.06 eV for FDACHO. The structural and electronic properties of the compounds were corroborated with a DFT (Density Functional Theory) study.


Subject(s)
Aniline Compounds/chemistry , Models, Chemical , Models, Molecular , Polymers/chemistry , Quantum Theory , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Thermodynamics
3.
J Mol Model ; 23(12): 342, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29143152

ABSTRACT

The capacity of 2,6-bis[((2-pyridylmethyl)oxy)methyl)]pyridine (BPMMP) to inhibit the corrosion of mild carbon steel in HCl was analyzed. In a polarization study, both the cathodic and anodic currents were appreciably decreased in the presence of BPMMP, suggesting that this ligand is effective at inhibiting corrosion at the metal surface. This conclusion is consistent with the results of impedance analysis, where only one time constant corresponding to one depressed capacitive loop was detected, and the diameter of the impedance plot was directly related to the concentration of BPMMP. Furthermore, when recurrence analysis was performed, a decrease in regular noise was observed due to the change of Shannon entropy when the inhibitor was present in the corrosive medium, showing that a high degree of recurrence increases the entropy of the system. Electrochemical data on some pyridyl-based inhibitors were collected from the literature and used to plot (i) I corr (A/cm2) vs. inhibition efficiency (η%) and (ii) ΔG°ads vs. inhibition efficiency (ƞ%) in order to examine the general relationships between these parameters. Furthermore, the interactions of the ligand BPMMP with different iron clusters (Fe15, Fe30, Fe45, and Fe60) were analyzed theoretically using density functional theory (DFT). The structural and electronic properties of BPMMP and its protonated form BPMMPH+ were studied before and after the interactions of BPMMP with the iron clusters. The first protonation was found to occur at pyridine nitrogen atom N1, resulting in a Gibbs free energy ΔG of -10.2 kcal/mol, with an energy difference of 5.3 kcal/mol between the two possible protonated conformers. Graphical abstract Recurrence and Noise signal performance of BPMMP as corrosion inhibitor.

4.
Molecules ; 20(4): 5440-55, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25826785

ABSTRACT

Phenyleneimine oligomers 4,4'-(((1E,1'E)-(((1E,1'E)-(1,4-phenylenebis-(azanylylidene))bis(methanylylidene))bis(2,5-bis(octyloxy)-4,1-phenylene))bis(methanylyl-idene))-bis(azanylylidene))dianiline (OIC1MS) and 7,7'-(((1E,1'E)-(((1E,1'E)-((9H-fluorene-2,7-diyl)bis(azanylylidene))bis(methanylylidene))bis(2,5-bis(octyloxy)-4,1phenylene))bis- (methanylylidene))bis(azanylylidene))bis(9H-fluoren-2-amine) (OIC2MS) were prepared by means of conventional and mechanochemical synthesis and characterized by FT-IR, 1H- and 13C-NMR techniques. The optical properties of the compounds were studied in solution by using UV-visible spectroscopy, and the optical effects were analyzed as a function of solvent. The results show that OIC2MS exhibits interesting photochromic properties. Furthermore, the structural and electronic properties of the compounds were analyzed by TD-DFT. It was found that the mechanosynthesis is an efficient method for the synthesis of both tetraimines.


Subject(s)
Aniline Compounds/chemical synthesis , Photochemical Processes , Aniline Compounds/chemistry , Carbon-13 Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Proton Magnetic Resonance Spectroscopy , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman
5.
J Mol Model ; 19(11): 4823-36, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24026575

ABSTRACT

The interactions of L-aminoglucosidic stereoisomers such as rhodostreptomycins A (Rho A) and B (Rho B) with cations (Mg(2+), Ca(2+), and H(+)) were studied by a quantum mechanical method that utilized DFT with B3LYP/6-311G. Docking studies were also carried out in order to explore the surface recognition properties of L-aminoglucoside with respect to Mg(2+) and Ca(2+) ions under solvated and nonsolvated conditions. Although both of the stereoisomers possess similar physicochemical/antibiotic properties against Helicobacter pylori, the thermochemical values for these complexes showed that its high affinity for Mg(2+) cations caused the hydration of Rho B. According to the results of the calculations, for Rho A-Ca(2+)(H2O)6, ΔH = -72.21 kcal mol(-1); for Rho B-Ca(2+)(H2O)6, ΔH = -72.53 kcal mol(-1); for Rho A-Mg(2+)(H2O)6, ΔH = -72.99 kcal mol(-1) and for Rho B-Mg(2+)(H2O)6, ΔH = -95.00 kcal mol(-1), confirming that Rho B binds most strongly with hydrated Mg(2+), considering the energy associated with this binding process. This result suggests that Rho B forms a more stable complex than its isomer does with magnesium ion. Docking results show that both of these rhodostreptomycin molecules bind to solvated Ca(2+) or Mg(2+) through hydrogen bonding. Finally, Rho B is more stable than Rho A when protonation occurs.


Subject(s)
Cations, Divalent/chemistry , Magnesium/chemistry , Streptomycin/analogs & derivatives , Calcium/chemistry , Hydrogen Bonding , Models, Molecular , Molecular Docking Simulation , Quantum Theory , Stereoisomerism , Streptomycin/chemistry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL