Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biophotonics ; 16(11): e202300182, 2023 11.
Article in English | MEDLINE | ID: mdl-37528614

ABSTRACT

Photobiomodulation (PBM) has therapeutic effects on wound healing, diabetic microangiopathy, and retinopathy. However, little is known about the use of PBM for the treatment of diabetes mellitus (DM). In this context, we aimed to evaluate the effects of PBM on pancreas morphology and insulin and glucose tolerance in an experimental model of DM. Thus, DM was induced by streptozotocin (STZ) (60 mg/kg). Subsequently, the rats were treated with PBM (808 nm and 30 J/cm2 ). After euthanasia, morphometric parameters and immunoreactivity for insulin and 8-OHdG were evaluated in the pancreas. The results showed that treated animals had higher values of body mass and higher values in the number of beta cells in the pancreas. In conclusion, PBM resulted in decreased weight loss in STZ-induced diabetic rats and presented a stimulatory effect on the pancreas of the treated animals, highlighting the promising effects of this therapy in the clinical condition of DM.


Subject(s)
Diabetes Mellitus, Experimental , Insulins , Low-Level Light Therapy , Rats , Animals , Rats, Wistar , Low-Level Light Therapy/methods , Pancreas , Homeostasis , Insulins/therapeutic use , Glucose , Blood Glucose , Insulin/therapeutic use
2.
Lasers Med Sci ; 37(3): 1799-1809, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34604943

ABSTRACT

High-fat diets lead to accumulation of body fat that is associated with the onset of insulin resistance and type II diabetes mellitus. On the other hand, photobiomodulation (PBM) is an electrophysical resource that interacts with cells, stimulating mitochondrial respiration, increasing ATP production, reducing key inflammatory mediators, inhibiting apoptosis, and stimulating angiogenesis. However, little is known about its therapeutic effectiveness on the development of diabetes in diet-induced obese mice. Thus, our aim was to evaluate the effect of PBM applied single point over the pancreas area on glucose homeostasis, insulin expression, and pancreatic morphometric parameters of mice submitted to high-fat diet for 12 weeks. Male mice C57BL6/J were divided into three groups: control group (C), diabetic group (D), and diabetic + PBM (D + PBM). The treatment with PBM started at 9th week and ended in the 12th week, applied 3 × /week. Body mass, fast blood glucose, and glucose and insulin tolerance were evaluated. Immunohistochemistry to detect insulin expression and pancreatic morphometry were also performed. At the end of 12th week, both groups submitted to high-fat diet showed an increase in body mass, adiposity, disturbances on glucose homeostasis, and high insulin expression when compared to the control group. However, mice treated with PBM had more discrete impairments on glucose homeostasis during the glucose tolerance test when compared to untreated D animals. Despite modest, the results were positive and encourage future investigations to explore different doses and duration of PBM to better elucidate its role in obesity-associated type 2 diabetes development.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Islets of Langerhans , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/metabolism , Diet, High-Fat/adverse effects , Glucose/metabolism , Homeostasis , Insulin , Islets of Langerhans/metabolism , Male , Mice , Mice, Inbred C57BL
3.
Arch Dermatol Res ; 314(9): 823-838, 2022 Nov.
Article in English | MEDLINE | ID: mdl-34609598

ABSTRACT

Aged skin is characterized by appearance of wrinkles, vascular lesions, hyperpigmentation, lentignes, texture, rhytides, and pores. These changes occur under the influence of intrinsic and extrinsic factors, as hormone alterations and exposure to ultraviolet light (UV) irradiation, respectively. Skin changes associated with aging have been assuming an important role in nowadays and bring to affect the quality of life. Intense Pulsed Light (ILP) is a noncollimated, polychromatic, and noncoherent non-surgical cosmetic therapy to skin rejuvenation. This is the first systematic review evaluating ILP treatment on skin rejuvenation evaluated by digital photographs and self-reported treatment efficacy. A PRISMA compliant review includes a search of the databases Scopus and PubMed. Sixteen studies treating 637 participants (with Fitzpatrick skin types I to IV and age varying from 21 to 80 years) were included. Patients were treated a mean of 4.29 sessions (range 3-7). The most studies results showed the efficacy of IPL treatment in telangiectasia, wrinkles, pore, erythema, rhytids, texture, lentigines, hiperpigmentation, and photoaging score. Six studies showed IPL-positive effects in association with other treatment and seven studies showed superior effect of other treatment or association to IPL with other treatment related to IPL alone. Nine studies showed low methodological quality. In conclusion, ILP treatment is effective on skin rejuvenation. However, there is no consensus about the parameters and future studies are needed to sample size limitations, made RCTs with low risk of bias, and improve the methodological quality its. Trial registration: Prospero Systematic Review Registration ID: CRD42021237817.


Subject(s)
Intense Pulsed Light Therapy , Skin Aging , Adult , Aged , Aged, 80 and over , Hormones , Humans , Intense Pulsed Light Therapy/methods , Middle Aged , Quality of Life , Rejuvenation , Skin/radiation effects , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...