Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomacromolecules ; 25(3): 2016-2023, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38362872

ABSTRACT

Porous framework materials are highly useful for catalysis, adsorption, and separations. Though they are usually made from inorganic and organic building blocks, recently, folded peptides have been utilized for constructing frameworks, opening up an enormous structure-space for exploration. These peptides assemble in a metal-free fashion using π-stacking, H-bonding, dispersion forces, and the hydrophobic effect. Manipulation of pore-defining H-bonding residues is known to generate new topologies, but the impact of mutations in the hydrophobic packing region facing away from the pores is less obvious. To explore their effects, we synthesized variants of peptide frameworks with mutations in the hydrophobic packing positions and found by single-crystal X-ray crystallography (SC-XRD) that they induce significant changes to the framework pore structure. These structural changes are driven by a need to maximize van der Waals interactions of the nonpolar groups, which are achieved by various mechanisms including helix twisting, chain flipping, chain offsetting, and desymmetrization. Even subtle changes to the van der Waals interface, such as the introduction of a methyl group or isomeric replacement, result in significant pore restructuring. This study shows that the dispersion interactions upholding a peptide material are a rich area for structural engineering.


Subject(s)
Metals , Peptides , Metals/chemistry , Crystallography, X-Ray , Peptides/genetics , Mutation
2.
J Am Chem Soc ; 144(15): 7001-7009, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35390261

ABSTRACT

The evolution of proteins from simpler, self-assembled peptides provides a powerful blueprint for the design of complex synthetic materials. Previously, peptide-metal frameworks using short sequences (≤3 residues) have shown great promise as proteomimetic materials that exhibit sophisticated capabilities. However, their development has been hindered due to few variable residues and restricted choice of side-chains that are compatible with metal ions. Herein, we developed a noncovalent strategy featuring π-stacking bipyridyl residues to assemble much longer peptides into crystalline frameworks that tolerate even previously incompatible acidic and basic functionalities and allow an unprecedented level of pore variations. Single-crystal X-ray structures are provided for all variants to guide and validate rational design. These materials exhibit hallmark proteomimetic behaviors such as guest-selective induced fit and assembly of multimetallic units. Significantly, we demonstrate facile optimization of the framework design to substantially increase affinity toward a complex organic molecule.


Subject(s)
Metals , Peptides , 2,2'-Dipyridyl , Metals/chemistry , Porosity , Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...