Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 13: 918507, 2022.
Article in English | MEDLINE | ID: mdl-36045672

ABSTRACT

Chronic pulmonary inflammation and chronic obstructive pulmonary disease (COPD) are major health issues largely due to air pollution and cigarette smoke (CS) exposure. The role of the innate receptor NLRP3 (nucleotide-binding domain and leucine-rich repeat containing protein 3) orchestrating inflammation through formation of an inflammasome complex in CS-induced inflammation or COPD remains controversial. Using acute and subchronic CS exposure models, we found that Nlrp3-deficient mice or wild-type mice treated with the NLRP3 inhibitor MCC950 presented an important reduction of inflammatory cells recruited into the bronchoalveolar space and of pulmonary inflammation with decreased chemokines and cytokines production, in particular IL-1ß demonstrating the key role of NLRP3. Furthermore, mice deficient for Caspase-1/Caspase-11 presented also decreased inflammation parameters, suggesting a role for the NLRP3 inflammasome. Importantly we showed that acute CS-exposure promotes NLRP3-dependent cleavage of gasdermin D in macrophages present in the bronchoalveolar space and in bronchial airway epithelial cells. Finally, Gsdmd-deficiency reduced acute CS-induced lung and bronchoalveolar space inflammation and IL-1ß secretion. Thus, we demonstrated in our model that NLRP3 and gasdermin D are key players in CS-induced pulmonary inflammation and IL-1ß release potentially through gasdermin D forming-pore and/or pyroptoctic cell death.


Subject(s)
Cigarette Smoking , Pneumonia , Pulmonary Disease, Chronic Obstructive , Animals , Caspase 1/metabolism , Cigarette Smoking/adverse effects , Epithelial Cells/metabolism , Inflammasomes/metabolism , Inflammation/metabolism , Macrophages/metabolism , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pneumonia/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Nicotiana/metabolism
2.
Immunohorizons ; 5(5): 273-283, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33958388

ABSTRACT

Cystic fibrosis is associated with chronic Pseudomonas aeruginosa colonization and inflammation. The role of MyD88, the shared adapter protein of the proinflammatory TLR and IL-1R families, in chronic P. aeruginosa biofilm lung infection is unknown. We report that chronic lung infection with the clinical P. aeruginosa RP73 strain is associated with uncontrolled lung infection in complete MyD88-deficient mice with epithelial damage, inflammation, and rapid death. Then, we investigated whether alveolar or myeloid cells contribute to heightened sensitivity to infection. Using cell-specific, MyD88-deficient mice, we uncover that the MyD88 pathway in myeloid or alveolar epithelial cells is dispensable, suggesting that other cell types may control the high sensitivity of MyD88-deficient mice. By contrast, IL-1R1-deficient mice control chronic P. aeruginosa RP73 infection and IL-1ß Ab blockade did not reduce host resistance. Therefore, the IL-1R1/MyD88 pathway is not involved, but other IL-1R or TLR family members need to be investigated. Our data strongly suggest that IL-1 targeted neutralizing therapies used to treat inflammatory diseases in patients unlikely reduce host resistance to chronic P. aeruginosa infection.


Subject(s)
Interleukin-1beta/immunology , Pseudomonas Infections/immunology , Pseudomonas aeruginosa/immunology , Receptors, Interleukin-1 Type I/immunology , Animals , Humans , Immunity, Innate , Interleukin-1beta/genetics , Lung/immunology , Lung/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/immunology , Pseudomonas Infections/metabolism , Receptors, Interleukin-1 Type I/genetics , Signal Transduction , Toll-Like Receptors/immunology
3.
Front Immunol ; 11: 1622, 2020.
Article in English | MEDLINE | ID: mdl-32849550

ABSTRACT

Cigarette smoke (CS) is the major cause of chronic lung injuries, such as chronic obstructive pulmonary disease (COPD). In patients with severe COPD, tertiary lymphoid follicles containing B lymphocytes and B cell-activating factor (BAFF) overexpression are associated with disease severity. In addition, BAFF promotes adaptive immunity in smokers and mice chronically exposed to CS. However, the role of BAFF in the early phase of innate immunity has never been investigated. We acutely exposed C57BL/6J mice to CS and show early BAFF expression in the bronchoalveolar space and lung tissue that correlates to airway neutrophil and macrophage influx. Immunostaining analysis revealed that neutrophils are the major source of BAFF. We confirmed in vitro that neutrophils secrete BAFF in response to cigarette smoke extract (CSE) stimulation. Antibody-mediated neutrophil depletion significantly dampens lung inflammation to CS exposure but only partially decreases BAFF expression in lung tissue and bronchoalveolar space suggesting additional sources of BAFF. Importantly, BAFF deficient mice displayed decreased airway neutrophil recruiting chemokines and neutrophil influx while the addition of exogenous BAFF significantly enhanced this CS-induced neutrophilic inflammation. This demonstrates that BAFF is a key proinflammatory cytokine and that innate immune cells in particular neutrophils, are an unconsidered source of BAFF in early stages of CS-induced innate immunity.


Subject(s)
B-Cell Activating Factor/biosynthesis , Inhalation Exposure/adverse effects , Neutrophils/immunology , Neutrophils/metabolism , Pneumonia/etiology , Pneumonia/metabolism , Tobacco Smoke Pollution/adverse effects , Animals , B-Cell Activating Factor/genetics , Bronchoalveolar Lavage Fluid/immunology , Cytokines/metabolism , Disease Models, Animal , Disease Susceptibility , Gene Expression , Humans , Inflammation Mediators/metabolism , Male , Mice , Neutrophil Infiltration , Pneumonia/pathology , Respiratory Mucosa/immunology , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology , Tobacco Smoking/adverse effects
4.
Sci Rep ; 9(1): 14848, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31619733

ABSTRACT

Cigarette smoke exposure is a leading cause of chronic obstructive pulmonary disease (COPD), a major health issue characterized by airway inflammation with fibrosis and emphysema. Here we demonstrate that acute exposure to cigarette smoke causes respiratory barrier damage with the release of self-dsDNA in mice. This triggers the DNA sensor cGAS (cyclic GMP-AMP synthase) and stimulator of interferon genes (STING), driving type I interferon (IFN I) dependent lung inflammation, which are attenuated in cGAS, STING or type I interferon receptor (IFNAR) deficient mice. Therefore, we demonstrate a critical role of self-dsDNA release and of the cGAS-STING-type I interferon pathway upon cigarette smoke-induced damage, which may lead to therapeutic targets in COPD.


Subject(s)
DNA/metabolism , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , Pneumonia/metabolism , Pulmonary Emphysema/metabolism , Receptor, Interferon alpha-beta/metabolism , Tobacco Smoke Pollution/adverse effects , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Repetitive Sequences, Nucleic Acid
5.
Sci Rep ; 8(1): 11245, 2018 07 26.
Article in English | MEDLINE | ID: mdl-30050168

ABSTRACT

Allergic asthma is characterized by a strong Th2 and Th17 response with inflammatory cell recruitment, airways hyperreactivity and structural changes in the lung. The protease allergen papain disrupts the airway epithelium triggering a rapid eosinophilic inflammation by innate lymphoid cell type 2 (ILC2) activation, leading to a Th2 immune response. Here we asked whether the daily oral administrations of the probiotic Escherichia coli strain Nissle 1917 (ECN) might affect the outcome of the papain protease induced allergic lung inflammation in BL6 mice. We find that ECN gavage significantly prevented the severe allergic response induced by repeated papain challenges and reduced lung inflammatory cell recruitment, Th2 and Th17 response and respiratory epithelial barrier disruption with emphysema and airway hyperreactivity. In conclusion, ECN administration attenuated severe protease induced allergic inflammation, which may be beneficial to prevent allergic asthma.


Subject(s)
Allergens/administration & dosage , Asthma/prevention & control , Escherichia coli/growth & development , Immunologic Factors/administration & dosage , Papain/administration & dosage , Probiotics/administration & dosage , Administration, Oral , Animals , Asthma/chemically induced , Asthma/pathology , Disease Models, Animal , Mice , Mice, Inbred C57BL , Respiratory Mucosa/pathology , Th17 Cells/immunology , Th2 Cells/immunology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...