Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 389: 121820, 2020 05 05.
Article in English | MEDLINE | ID: mdl-31836370

ABSTRACT

In this manuscript we studied in the laboratory the bioremediation effects of a biostimulant obtained from okara by enzymatic hydrolysis processes in a soil polluted with used motor-car oil at a rate of 1 % (w/w) over an 89-day period. The biostimulant was added to the soil 6 times during the incubation period at a rate of 2 %. Dehydrogenase activity and the evolution of polycyclic aromatic hydrocarbons (PAHs) and pseudo total heavy metals in soil were studied. The successive applications of the biostimulant to the polluted soil gradually increased PAHs degradation during the experimental period. Thus, at the end of the experiment, the application of the biostimulant decreased the concentration of naphthalene in soil by 74 %, while PAHs with 3, 4, 5 and 6 aromatic rings had been reduced by around 58 %, 44 %, 30 % and 23 %, respectively. This degradation is possibly due to the high number of low molecular weight peptides (<300 Da) in the biostimulant which are readily available for PAHs-tolerant soil microorganisms that accelerate the degradation of the said toxins. The concentration of heavy metals in the oil used was not very high and consequently the dehydrogenase activity was not negatively affected.


Subject(s)
Fuel Oils/analysis , Glycine max/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Soil Microbiology , Soil Pollutants/analysis , Automobiles , Biodegradation, Environmental , Fertilizers/analysis
2.
Environ Technol ; 40(3): 399-406, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29037122

ABSTRACT

In this manuscript, we study the manufacture and effect on soils of different edaphic biostimulants/biofertilizers (BS) obtained from sewage sludge using Bacillus licheniformis as biological tool. These BS consist of different combinations of organic matter, bacteria and enzymes that were subjected to several treatments. These BS were applied in soil in order to observe their influence on the biochemical properties (enzymatic activities and ergosterol content). Dehydrogenase, urease, ß-glucosidase, phosphatase activities and ergosterol content were measured at different incubation days. Only dehydrogenase activity and ergosterol content were significantly stimulated after the application of BS1 and BS4. Rest of the extracellular activities were not stimulated probably because B. licheniformis practically has digested all organic substrates during fermentation process.


Subject(s)
Soil Pollutants , Soil , Fermentation , Sewage , Soil Microbiology
3.
Environ Technol ; 40(16): 2073-2084, 2019 Jul.
Article in English | MEDLINE | ID: mdl-29400642

ABSTRACT

In this work okara (OK), a by-product of soy milk manufacturing, is submitted to an enzymatic hydrolysis and a fermentative process to produce different soil biostimulants (BS): EH, hydrolysate obtained by the enzymatic process; FHEB, fermentation broth with Bacillus licheniformis and the enzymes secreted during the fermentation; FHE, fermentation broth without bacteria and FH, the FHE hydrolysate in which enzymes were denatured. Enzymatic hydrolysates showed a different chemical composition compared with fermented hydrolysates and OK. It had a higher protein concentration as well as C, P and K. The proteins of OK were converted into peptides with a lower molecular weight, the fermented hydrolysates being those with the lowest molecular weight profile. The influences of hydrolysates and OK were tested in soil, finding that ß-glucosidase, phosphatase and dehydrogenase activities were stimulated by every treatment. However, it was observed that EH produced a greater stimulation of dehydrogenase and phosphatase than both OK and fermented BS. The bacterial and fungal phospholipid fatty acids were also higher in soils amended with BS than those of the control and soils with OK. It has also been found that ß-glucosidase, phosphatase and microbial biomass were dose-dependent in every treatment, but dehydrogenase only was dose-dependent in EH and OK treatments.


Subject(s)
Bacillus licheniformis , Soil , Fermentation , Hydrolysis , Soil Microbiology
4.
J Environ Manage ; 233: 812-822, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30316582

ABSTRACT

In recent years increasing attention has been given to the potential use of contaminated lands for biofuel production, because these degraded soils cannot be used for food production. To establish these crops in Mediterranean contaminated areas, where the soil quality is usually very poor, the addition of soil amendments might be necessary to improve soil productivity. In addition, the use of crops with low water demands, adapted to these particular conditions of climate and soil contamination, is a key requirement. We studied the development of Cynara cardunculus and Silybum mariamun crops (both suitable for the production of biomass for biofuel uses under a Mediterranean climate) in trace element contaminated soils under field conditions. To our knowledge, this is the first such work under these particular experimental conditions (soil contamination and field trial). Soil physical (hydraulic), chemical, and biochemical properties were monitored for one year in experimental plots, where we tested the effects of the addition of two different amendments (sugar lime and biosolid compost) on soil functioning and crop productivity. Seed germination and plant biomass production were low, although amendment addition improved both parameters. The chemical and biological indicators (enzyme activities, PLFA profiles, and soil respiration) tended to be slightly improved by the amendments, especially sugar lime. The hydraulic properties of the soil in the experimental area were very deficient, and the effect of the amendments was not enough to improve them; this was probably the main cause of the general low productivity of these rain-fed crops, as water infiltrated poorly through the root zone. To improve crop productivity under these soil conditions, certain aspects could be improved: higher doses of amendments should be applied and deeper tillage of the soil after amendment addition should be performed to facilitate water infiltration.


Subject(s)
Soil Pollutants , Trace Elements , Biomass , Crops, Agricultural , Soil
5.
Antonie Van Leeuwenhoek ; 99(3): 727-31, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20886291

ABSTRACT

An ecological study of the yeasts present in a spontaneous and an inoculated fermentation in red wine was carried out in 2005 vintage in a winery located in the Denomination of Origin "Sierras de Málaga" (Málaga, southern of Spain). The winery operated by the first time with the 2003 vintage and since then, has used commercial yeast inocula to start alcoholic fermentation. Yeast isolates were identified by PCR-RFLP analysis of the 5.8S-ITS region from the ribosomal DNA and by mitochondrial DNA RFLP analysis. Except for non-Saccharomyces yeasts found in the fresh must before fermentation, all the isolates were found to be commercial Saccharomyces cerevisiae strains employed by the winery during the successive vintages; thus, no indigenous Saccharomyces yeasts were isolated during fermentation. The same four restriction patterns were found in non inoculated and inoculated vats, although with different frequencies. The use of commercial yeast starter in a new established winery seems to have prevented the development of a resident indigenous Saccharomyces flora.


Subject(s)
Saccharomyces cerevisiae/genetics , Wine/microbiology , Fermentation , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Saccharomyces cerevisiae/classification , Spain
6.
Int J Food Microbiol ; 143(3): 241-5, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20851489

ABSTRACT

For the first time, an ecological survey of wine yeasts present in grapes growing in two vineyards located in the region of "Serranía de Ronda" (Málaga, southern Spain) has been carried out. During the 2006 and 2007 vintages, grapes from different varieties were aseptically collected and allowed to ferment spontaneously in the laboratory. From a total of 1586 colonies isolated from microvinifications, 1281 were identified according to ITS polymorphisms and their identity confirmed by sequencing of the D1/D2 region of 26S rDNA. Most of the isolates (84%) corresponded to thirteen different non-Saccharomyces species with Kluyveromyces thermotolerans, Hanseniaspora guilliermondii, Hanseniaspora uvarum and Issatchenkia orientalis accounting for 42.7% of the total. Mitochondrial DNA restriction analysis from the Saccharomyces cerevisiae isolates revealed a low diversity since only eleven different profiles were found, nine of them corresponding to local strains and two to commercial ones that had been used in different campaigns and that very likely were disseminated from the winery to the adjacent vineyard. A different distribution of strains was found in the three grape varieties studied.


Subject(s)
Saccharomyces/classification , Saccharomyces/physiology , Vitis/microbiology , Yeasts/classification , Yeasts/physiology , Demography , Saccharomyces/genetics , Spain , Yeasts/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...