Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Plant Commun ; 5(6): 100851, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38409784

ABSTRACT

Convergent morphological evolution is widespread in flowering plants, and understanding this phenomenon relies on well-resolved phylogenies. Nuclear phylogenetic reconstruction using transcriptome datasets has been successful in various angiosperm groups, but it is limited to taxa with available fresh materials. Asteraceae, which are one of the two largest angiosperm families and are important for both ecosystems and human livelihood, show multiple examples of convergent evolution. Nuclear Asteraceae phylogenies have resolved relationships among most subfamilies and many tribes, but many phylogenetic and evolutionary questions regarding subtribes and genera remain, owing to limited sampling. Here, we increased the sampling for Asteraceae phylogenetic reconstruction using transcriptomes and genome-skimming datasets and produced nuclear phylogenetic trees with 706 species representing two-thirds of recognized subtribes. Ancestral character reconstruction supports multiple convergent evolutionary events in Asteraceae, with gains and losses of bilateral floral symmetry correlated with diversification of some subfamilies and smaller groups, respectively. Presence of the calyx-related pappus may have been especially important for the success of some subtribes and genera. Molecular evolutionary analyses support the likely contribution of duplications of MADS-box and TCP floral regulatory genes to innovations in floral morphology, including capitulum inflorescences and bilaterally symmetric flowers, potentially promoting the diversification of Asteraceae. Subsequent divergences and reductions in CYC2 gene expression are related to the gain and loss of zygomorphic flowers. This phylogenomic work with greater taxon sampling through inclusion of genome-skimming datasets reveals the feasibility of expanded evolutionary analyses using DNA samples for understanding convergent evolution.


Subject(s)
Asteraceae , Evolution, Molecular , Phylogeny , Asteraceae/genetics , Asteraceae/anatomy & histology , Transcriptome , Genome, Plant
2.
An Acad Bras Cienc ; 95(2): e20191135, 2023.
Article in English | MEDLINE | ID: mdl-36820759

ABSTRACT

The monophyly of Flourensia was examined for the first time by sequencing the nuclear ITS and plastid psbA- trnH regions in 18 species of the genus, analyzing them along with representatives of the remaining genera of subtribe Enceliinae. Results showed strong evidence for the polyphyly of Flourensia identifying two well-supported groups: Flourensia, a clade from North America including the type F. laurifolia, and another clade, here designed as the new genus Austroflourensia, containing the South American species. Austroflourensia is related to the other four genera composing the subtribe Enceliinae, whereas Flourensia s.s. is sister to all of them. Austroflourensia can be mainly distinguished by having a shrubby or subshrubby habit, capitula always radiate usually arranged in weakly cymose-corymbose capitulescences, phyllaries 2-3-seriate, and disc corollas shortly dentate. This paper proposes twelve new combinations to accommodate species previously described in the genus Flourensia and provides emended descriptions of Flourensia and the new genus Austroflourensia. The illustration of the type of the new genus, a distribution map, and a key to the genera of Enceliinae are also provided.


Subject(s)
Asteraceae , Phylogeny
3.
J Integr Plant Biol ; 63(7): 1273-1293, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33559953

ABSTRACT

Biodiversity is not evenly distributed among related groups, raising questions about the factors contributing to such disparities. The sunflower family (Asteraceae, >26,000 species) is among the largest and most diverse plant families, but its species diversity is concentrated in a few subfamilies, providing an opportunity to study the factors affecting biodiversity. Phylotranscriptomic analyses here of 244 transcriptomes and genomes produced a phylogeny with strong support for the monophyly of Asteraceae and the monophyly of most subfamilies and tribes. This phylogeny provides a reference for detecting changes in diversification rates and possible factors affecting Asteraceae diversity, which include global climate shifts, whole-genome duplications (WGDs), and morphological evolution. The origin of Asteraceae was estimated at ~83 Mya, with most subfamilies having diverged before the Cretaceous-Paleocene boundary. Phylotranscriptomic analyses supported the existence of 41 WGDs in Asteraceae. Changes to herbaceousness and capitulescence with multiple flower-like capitula, often with distinct florets and scaly pappus/receptacular bracts, are associated with multiple upshifts in diversification rate. WGDs might have contributed to the survival of early Asteraceae by providing new genetic materials to support morphological transitions. The resulting competitive advantage for adapting to different niches would have increased biodiversity in Asteraceae.


Subject(s)
Asteraceae/genetics , Biodiversity , Evolution, Molecular , Gene Duplication/genetics , Genome, Plant/genetics , Phylogeny , Polyploidy , Transcriptome/genetics
4.
Mol Biol Evol ; 34(6): 1505-1516, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28333296

ABSTRACT

The de novo evolution of genes and the novel proteins they encode has stimulated much interest in the contribution such innovations make to the diversity of life. Most research on this de novo evolution focuses on transcripts, so studies on the biochemical steps that can enable completely new proteins to evolve and the time required to do so have been lacking. Sunflower Preproalbumin with SFTI-1 (PawS1) is an unusual albumin precursor because in addition to producing albumin it also yields a potent, bicyclic protease-inhibitor called SunFlower Trypsin Inhibitor-1 (SFTI-1). Here, we show how this inhibitor peptide evolved stepwise over tens of millions of years. To trace the origin of the inhibitor peptide SFTI-1, we assembled seed transcriptomes for 110 sunflower relatives whose evolution could be resolved by a chronogram, which allowed dates to be estimated for the various stages of molecular evolution. A genetic insertion event in an albumin precursor gene ∼45 Ma introduced two additional cleavage sites for protein maturation and conferred duality upon PawS1-Like genes such that they also encode a small buried macrocycle. Expansion of this region, including two Cys residues, enlarged the peptide ∼34 Ma and made the buried peptides bicyclic. Functional specialization into a protease inhibitor occurred ∼23 Ma. These findings document the evolution of a novel peptide inside a benign region of a pre-existing protein. We illustrate how a novel peptide can evolve without de novo gene evolution and, critically, without affecting the function of what becomes the protein host.


Subject(s)
Helianthus/genetics , Peptides, Cyclic/genetics , Amino Acid Motifs , Amino Acid Sequence , Biological Evolution , Evolution, Molecular , Models, Molecular , Mutagenesis, Insertional/genetics , Peptides , Peptides, Cyclic/metabolism , Phylogeny , Prealbumin/genetics , Protein Precursors/genetics , Seeds/genetics
5.
Mol Phylogenet Evol ; 99: 116-132, 2016 06.
Article in English | MEDLINE | ID: mdl-26979262

ABSTRACT

Spatial and temporal differences in ecological opportunity can result in disparity of net species diversification rates and consequently uneven distribution of taxon richness across the tree of life. The largest eudicotyledonous plant family Asteraceae has a global distribution and at least 460 times more species than its South American endemic sister family Calyceraceae. In this study, diversification rate dynamics across Asteraceae are examined in light of the several hypothesized causes for the family's evolutionary success that could be responsible for rate change. The innovations of racemose capitulum and pappus, and a whole genome duplication event occurred near the origin of the family, yet we found the basal lineages of Asteraceae that evolved in South America share background diversification rates with Calyceraceae and their Australasian sister Goodeniaceae. Instead we found diversification rates increased gradually from the origin of Asteraceae approximately 69.5Ma in the late Cretaceous through the Early Eocene Climatic Optimum at least. In contrast to earlier studies, significant rate shifts were not strongly correlated with intercontinental dispersals or polyploidization. The difference is due primarily to sampling more backbone nodes, as well as calibrations placed internally in Asteraceae that resulted in earlier divergence times than those found in most previous relaxed clock studies. Two clades identified as having transformed rate processes are the Vernonioid Clade and a clade within the Heliantheae alliance characterized by phytomelanic fruit (PF Clade) that represents an American radiation. In Africa, subfamilies Carduoideae, Pertyoideae, Gymnarrhenoideae, Cichorioideae, Corymbioideae, and Asteroideae diverged in a relatively short span of only 6.5millionyears during the Middle Eocene.


Subject(s)
Asteraceae/classification , Biodiversity , Biological Evolution , Asteraceae/genetics , Asteraceae/physiology , Chloroplasts/genetics , DNA, Plant/chemistry , DNA, Plant/metabolism , Ecology , Phylogeny , Polyploidy , Sequence Analysis, DNA
7.
Mol Phylogenet Evol ; 97: 90-100, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26667031

ABSTRACT

The remarkable diversity of Eupatorieae in the Brazilian flora has received little study, despite the tribe's very high levels of endemism and importance in the threatened Cerrado and the Atlantic Forest biodiversity hotspots. Eupatorieae are one of the largest tribes in Asteraceae with 14 of 19 recognized subtribes occurring in Brazil. We constructed the largest phylogeny of Brazilian Eupatorieae to date that sampled the nrITS and ETS, chloroplast ndhI and ndhF genes, and the ndhI-ndhG intergenic spacer for 183 species representing 77 of the 85 Brazilian genera of the tribe. Maximum likelihood and Bayesian phylogenetic analyses showed that these species are not collectively monophyletic, so their distribution reflects multiple introductions into Brazil. A novel clade was found that includes 75% of the genera endemic to Brazil (Cerrado-Atlantic Forest Eupatorieae, "CAFE" clade). This radiation of at least 247 species concentrated in the Cerrado and Atlantic Forest biomes of central eastern Brazil is <7 my old and exhibits several ecologically diverse life forms. Eight subtribes of Brazilian Eupatorieae (Ageratinae, Alomiinae, Ayapaninae, Critoniinae, Disynaphiinae, Eupatoriinae, Gyptidinae and Hebecliniinae) and 16 genera (Ageratum, Agrianthus, Austroeupatorium, Bejaranoa, Chromolaena, Critonia, Disynaphia, Grazielia, Hatschbachiella, Heterocondylus, Koanophyllon, Lasiolaena, Neocabreria, Praxelis, Stylotrichium, and Symphyopappus) were found to be polyphyletic. We attribute incongruities between the molecular phylogenetic results and the current classification of the tribe mostly to convergent evolution of morphological characters traditionally used in the classification of the tribe. We used these phylogenetic results to suggest changes to the classification of some subtribes and genera of Eupatorieae that occur in Brazil.


Subject(s)
Asteraceae/classification , Asteraceae/genetics , Forests , Phylogeny , Bayes Theorem , Biodiversity , Brazil , Chloroplasts/genetics , Evolution, Molecular , Likelihood Functions
8.
Mol Phylogenet Evol ; 85: 161-70, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25707760

ABSTRACT

Data from molecular phylogenetics were used to assess aspects of diversity and relationships in Brickellia, a large and widespread genus of Eupatorieae. The dataset included sequence data from nuclear ribosomal ITS, ETS, and plastid psbA-trnH regions. An initial question was to assess the monophyly of the genus and whether Barroetea, Phanerostylis, and Kuhnia should be recognized as separate from or included in Brickellia. The results supported the hypothesis that Brickellia is monophyletic, with the small (2-3 species) Pleurocoronis as the sister group and showed Barroetea, Phanerostylis, and Kuhnia all embedded within the genus. Results of a time calibrated phylogeny from a BEAST analysis gave an estimated origination time for Brickellia at about 9 million years ago (Ma), with the oldest split within the genus dated at about 7.5Ma. A BAMM analysis based on the time calibrated tree showed that Brickellia has one rate shift in diversification associated with its origin in the late Miocene. Some lineages within the genus have had an increase in the rate of diversification over the past 5Ma, whereas other lineages have had a decrease in net diversification during this period. The results also elucidated nine clades within Brickellia which are accepted as taxonomic sections, and that will form logical units for future detailed studies.


Subject(s)
Asteraceae/classification , Evolution, Molecular , Phylogeny , Asteraceae/genetics , DNA, Plant/genetics , DNA, Ribosomal Spacer/genetics , Mexico , Plastids/genetics , Sequence Analysis, DNA
9.
Mol Phylogenet Evol ; 80: 43-53, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25083940

ABSTRACT

A backbone phylogeny that fully resolves all subfamily and deeper nodes of Asteraceae was constructed using 14 chloroplast DNA loci. The recently named genus Famatinanthus was found to be sister to the Mutisioideae-Asteroideae clade that represents more than 99% of Asteraceae and was found to have the two chloroplast inversions present in all Asteraceae except the nine genera of Barnadesioideae. A monotypic subfamily Famatinanthoideae and tribe Famatinantheae are named herein as new. Relationships among the basal lineages of the family were resolved with strong support in the Bayesian analysis as (Barnadesioideae (Famatinanthoideae (Mutisioideae (Stifftioideae (Wunderlichioideae-Asteroideae))))). Ancestral state reconstruction of ten morphological characters at the root node of the Asteraceae showed that the ancestral sunflower would have had a woody habit, alternate leaves, solitary capitulescences, epaleate receptacles, smooth styles, smooth to microechinate pollen surface sculpturing, white to yellow corollas, and insect-mediated pollination. Herbaceous habit, echinate pollen surface, pubescent styles, and cymose capitulescences were reconstructed for backbone nodes of the phylogeny corresponding to clades that evolved shortly after Asteraceae dispersed out of South America. No support was found for discoid capitula, multiseriate involucres or bird pollination as the ancestral character condition for any node. Using this more resolved phylogenetic tree, the recently described Raiguenrayun cura+Mutisiapollis telleriae fossil should be associated to a more derived node than previously suggested when time calibrating phylogenies of Asteraceae.


Subject(s)
Asteraceae/classification , Biological Evolution , Phylogeny , Asteraceae/genetics , Bayes Theorem , DNA, Chloroplast/genetics , DNA, Plant/genetics , Fossils , Likelihood Functions , Pollination , Sequence Analysis, DNA
10.
Plant Cell ; 26(3): 981-95, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24681618

ABSTRACT

The de novo evolution of proteins is now considered a frequented route for biological innovation, but the genetic and biochemical processes that lead to each newly created protein are often poorly documented. The common sunflower (Helianthus annuus) contains the unusual gene PawS1 (Preproalbumin with SFTI-1) that encodes a precursor for seed storage albumin; however, in a region usually discarded during albumin maturation, its sequence is matured into SFTI-1, a protease-inhibiting cyclic peptide with a motif homologous to unrelated inhibitors from legumes, cereals, and frogs. To understand how PawS1 acquired this additional peptide with novel biochemical functionality, we cloned PawS1 genes and showed that this dual destiny is over 18 million years old. This new family of mostly backbone-cyclic peptides is structurally diverse, but the protease-inhibitory motif was restricted to peptides from sunflower and close relatives from its subtribe. We describe a widely distributed, potential evolutionary intermediate PawS-Like1 (PawL1), which is matured into storage albumin, but makes no stable peptide despite possessing residues essential for processing and cyclization from within PawS1. Using sequences we cloned, we retrodict the likely stepwise creation of PawS1's additional destiny within a simple albumin precursor. We propose that relaxed selection enabled SFTI-1 to evolve its inhibitor function by converging upon a successful sequence and structure.


Subject(s)
Evolution, Molecular , Peptides/genetics , Prealbumin/genetics , Amino Acid Sequence , Molecular Sequence Data , Peptides/chemistry , Phylogeny , Prealbumin/chemistry , Protein Precursors/chemistry , Protein Precursors/genetics , Seeds/genetics , Sequence Homology, Amino Acid
11.
BMC Plant Biol ; 10: 176, 2010 Aug 16.
Article in English | MEDLINE | ID: mdl-20712858

ABSTRACT

BACKGROUND: In flowering plants and animals the most common ribosomal RNA genes (rDNA) organisation is that in which 35S (encoding 18S-5.8S-26S rRNA) and 5S genes are physically separated occupying different chromosomal loci. However, recent observations established that both genes have been unified to a single 35S-5S unit in the genus Artemisia (Asteraceae), a genomic arrangement typical of primitive eukaryotes such as yeast, among others. Here we aim to reveal the origin, distribution and mechanisms leading to the linked organisation of rDNA in the Asteraceae by analysing unit structure (PCR, Southern blot, sequencing), gene copy number (quantitative PCR) and chromosomal position (FISH) of 5S and 35S rRNA genes in approximately 200 species representing the family diversity and other closely related groups. RESULTS: Dominant linked rDNA genotype was found within three large groups in subfamily Asteroideae: tribe Anthemideae (93% of the studied cases), tribe Gnaphalieae (100%) and in the "Heliantheae alliance" (23%). The remaining five tribes of the Asteroideae displayed canonical non linked arrangement of rDNA, as did the other groups in the Asteraceae. Nevertheless, low copy linked genes were identified among several species that amplified unlinked units. The conserved position of functional 5S insertions downstream from the 26S gene suggests a unique, perhaps retrotransposon-mediated integration event at the base of subfamily Asteroideae. Further evolution likely involved divergence of 26S-5S intergenic spacers, amplification and homogenisation of units across the chromosomes and concomitant elimination of unlinked arrays. However, the opposite trend, from linked towards unlinked arrangement was also surmised in few species indicating possible reversibility of these processes. CONCLUSIONS: Our results indicate that nearly 25% of Asteraceae species may have evolved unusual linked arrangement of rRNA genes. Thus, in plants, fundamental changes in intrinsic structure of rDNA units, their copy number and chromosomal organisation may occur within relatively short evolutionary time. We hypothesize that the 5S gene integration within the 35S unit might have repeatedly occurred during plant evolution, and probably once in Asteraceae.


Subject(s)
Asteraceae/classification , Asteraceae/genetics , DNA, Ribosomal/genetics , Evolution, Molecular , Genes, rRNA/genetics , Phylogeny , Animals , Base Sequence , Chromosomes, Plant , DNA, Ribosomal Spacer/genetics , Genome, Plant/genetics , In Situ Hybridization, Fluorescence , Molecular Sequence Data , RNA, Ribosomal , RNA, Ribosomal, 5S/genetics , Sequence Alignment
12.
Mol Phylogenet Evol ; 47(2): 757-82, 2008 May.
Article in English | MEDLINE | ID: mdl-18375151

ABSTRACT

The largest family of flowering plants Asteraceae (Compositae) is found to contain 12 major lineages rather than five as previously suggested. Five of these lineages heretofore had been circumscribed in tribe Mutisieae (Cichorioideae), a taxon shown by earlier molecular studies to be paraphyletic and to include some of the deepest divergences of the family. Combined analyses of 10 chloroplast DNA loci by different phylogenetic methods yielded highly congruent well-resolved trees with 95% of the branches receiving moderate to strong statistical support. Our strategy of sampling genera identified by morphological studies as anomalous, supported by broader character sampling than previous studies, resulted in identification of several novel clades. The generic compositions of subfamilies Carduoideae, Gochnatioideae, Hecastocleidoideae, Mutisioideae, Pertyoideae, Stifftioideae, and Wunderlichioideae are novel in Asteraceae systematics and the taxonomy of the family has been revised to reflect only monophyletic groups. Our results contradict earlier hypotheses that early divergences in the family took place on and spread from the Guayana Highlands (Pantepui Province of northern South America) and raise new hypotheses about how Asteraceae dispersed out of the continent of their origin. Several nodes of this new phylogeny illustrate the vast differential in success of sister lineages suggesting focal points for future study of species diversification. Our results also provide a backbone exemplar of Asteraceae for supertree construction.


Subject(s)
Asteraceae/classification , Asteraceae/genetics , Phylogeny , Bayes Theorem , Consensus Sequence , Gene Deletion , Geography , Models, Genetic , Mutagenesis, Insertional
13.
Mol Phylogenet Evol ; 31(3): 815-21, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15120380

ABSTRACT

A phylogeny of the genus Montanoa based on the internal transcribed spacer (ITS) and the external transcribed spacer (ETS) is presented. Each of the two clades revealed by the Bayesian and parsimony analyses has approximately half of the number of species in the genus. One lineage is composed mostly of central and southern Mexican species whereas the other lineage contains those species endemic to Mesoamerica and South America. The molecular phylogeny is compared to previous phylogenetic hypotheses based on morphological characters. Key features in the structure of the capitulum such as pale morphology, heavily used in the past to construct hypotheses of relationship within the genus, are viewed as of minimal value to circumscribe natural groups. The relationships of Montanoa to other genera in the Heliantheae are briefly discussed.


Subject(s)
Asteraceae/genetics , DNA, Intergenic/genetics , DNA, Plant , Genes, Plant , Montanoa/genetics , Genetic Variation , Phylogeny , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...