Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 14(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38540009

ABSTRACT

Poultry locomotion is an important indicator of animal health, welfare, and productivity. Traditional methodologies such as manual observation or the use of wearable devices encounter significant challenges, including potential stress induction and behavioral alteration in animals. This research introduced an innovative approach that employs an enhanced track anything model (TAM) to track chickens in various experimental settings for locomotion analysis. Utilizing a dataset comprising both dyed and undyed broilers and layers, the TAM model was adapted and rigorously evaluated for its capability in non-intrusively tracking and analyzing poultry movement by intersection over union (mIoU) and the root mean square error (RMSE). The findings underscore TAM's superior segmentation and tracking capabilities, particularly its exemplary performance against other state-of-the-art models, such as YOLO (you only look once) models of YOLOv5 and YOLOv8, and its high mIoU values (93.12%) across diverse chicken categories. Moreover, the model demonstrated notable accuracy in speed detection, as evidenced by an RMSE value of 0.02 m/s, offering a technologically advanced, consistent, and non-intrusive method for tracking and estimating the locomotion speed of chickens. This research not only substantiates TAM as a potent tool for detailed poultry behavior analysis and monitoring but also illuminates its potential applicability in broader livestock monitoring scenarios, thereby contributing to the enhancement of animal welfare and management in poultry farming through automated, non-intrusive monitoring and analysis.

2.
PLoS One ; 18(3): e0282923, 2023.
Article in English | MEDLINE | ID: mdl-36952445

ABSTRACT

A silvopasture system intentionally integrates trees, forages, and livestock, allowing dual land use. These systems can provide high-quality habitat for broiler chickens; however, such systems have not been widely adopted by the broiler industry in the United States. The objective of this study was to examine the effect of silvopasture versus open pasture access on fearfulness and leg health in fast-growing broiler chickens. A total of 886 mixed-sex Ross 708 chicks in Experiment 1 (Exp 1) and 648 chicks in Experiment 2 (Exp 2) were housed in coops and had access to 16 (Exp 1) or 12 (Exp 2) 125m2 silvopasture plots (x̄ = 32% canopy cover) or open pasture plots (no canopy cover) from day 24 of age. Fearfulness was measured using a tonic immobility test (tonic immobility duration), and leg health was assessed by quantifying footpad dermatitis, hock burns, gait, and performing a latency-to-lie test on days 37-39 of age. Birds in the silvopasture treatment were less fearful than birds in the open pasture treatment. Overall, birds in both silvopasture and open pasture systems had excellent leg health. Silvopasture birds had lower footpad dermatitis scores than open pasture birds. Silvopasture birds tended to have worse gait than open pasture birds in Exp 1, but not in Exp 2. Hock burn scores and latency-to-lie did not differ between treatments in Exp 1 or Exp 2. Raising birds in silvopasture reduced fear and improved footpad health compared to birds raised in open pastures, which indicates that silvopasture systems provide some benefits for affective state and leg health in fast-growing broilers.


Subject(s)
Chickens , Dermatitis , Animals , Housing, Animal , Tarsus, Animal , Fear , Dermatitis/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...