Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nat Mater ; 22(10): 1210-1217, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37537354

ABSTRACT

Colloidal semiconductor quantum dots are robust emitters implemented in numerous prototype and commercial optoelectronic devices. However, active fluorescence colour tuning, achieved so far by electric-field-induced Stark effect, has been limited to a small spectral range, and accompanied by intensity reduction due to the electron-hole charge separation effect. Utilizing quantum dot molecules that manifest two coupled emission centres, we present a unique electric-field-induced instantaneous colour-switching effect. Reversible emission colour switching without intensity loss is achieved on a single-particle level, as corroborated by correlated electron microscopy imaging. Simulations establish that this is due to the electron wavefunction toggling between the two centres, induced by the electric field, and affected by the coupling strength. Quantum dot molecules manifesting two coupled emission centres may be tailored to emit distinct colours, opening the path for sensitive field sensing and colour-switchable devices such as a novel pixel design for displays or an electric-field-induced colour-tunable single-photon source.

2.
ACS Nano ; 17(15): 14990-15000, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37459645

ABSTRACT

Coupled colloidal quantum dot molecules (CQDMs) are an emerging class of nanomaterials, manifesting two coupled emission centers and thus introducing additional degrees of freedom for designing quantum-dot-based technologies. The properties of multiply excited states in these CQDMs are crucial to their performance as quantum light emitters, but they cannot be fully resolved by existing spectroscopic techniques. Here we study the characteristics of biexcitonic species, which represent a rich landscape of different configurations essentially categorized as either segregated or localized biexciton states. To this end, we introduce an extension of Heralded Spectroscopy to resolve the different biexciton species in the prototypical CdSe/CdS CQDM system. By comparing CQDMs with single quantum dots and with nonfused quantum dot pairs, we uncover the coexistence and interplay of two distinct biexciton species: A fast-decaying, strongly interacting biexciton species, analogous to biexcitons in single quantum dots, and a long-lived, weakly interacting species corresponding to two nearly independent excitons. The two biexciton types are consistent with numerical simulations, assigning the strongly interacting species to two excitons localized at one side of the quantum dot molecule and the weakly interacting species to excitons segregated to the two quantum dot molecule sides. This deeper understanding of multiply excited states in coupled quantum dot molecules can support the rational design of tunable single- or multiple-photon quantum emitters.

3.
ACS Nano ; 16(4): 5566-5576, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35289161

ABSTRACT

Colloidal quantum dots (CQDs), major building blocks in modern optoelectronic devices, have so far been synthesized with only one emission center where the exciton resides. Recent development of coupled colloidal quantum dots molecules (CQDM), where two core-shell CQDs are fused to form two emission centers in close proximity, allows exploration of how charge carriers in one CQD affect the charge carriers in the other CQD. Cryogenic single particle spectroscopy reveals that while CQD monomers manifest a simple emission spectrum comprising a main emission peak with well-defined phonon sidebands, CQDMs exhibit a complex spectrum with multiple peaks that are not all spaced according to the known phonon frequencies. Based on complementary emission polarization and time-resolved analysis, this is assigned to fluorescence of the two coupled emission centers. Moreover, the complex peak structure shows correlated spectral diffusion indicative of the coupling between the two emission centers. Utilizing Schrödinger-Poisson self-consistent calculations, we directly map the spectral behavior, alternating between neutral and charged states of the CQDM. Spectral shifts related to electrostatic interaction between a charged emission center and the second emission center are thus fully mapped. Furthermore, effects of moving surface charges are identified, whereby the emission center proximal to the charge shows larger shifts. Instances where the two emission centers are negatively charged simultaneously are also identified. Such detailed mapping of charging states is enabled by the coupling within the CQDM and its anisotropic structure. This understanding of the coupling interactions is progress toward quantum technology and sensing applications based on CQDMs.

4.
J Am Chem Soc ; 143(47): 19816-19823, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34791875

ABSTRACT

Coupled colloidal quantum dot (CQD) dimers represent a new class of artificial molecules composed of fused core/shell semiconductor nanocrystals. The electronic coupling and wave function hybridization are enabled by the formation of an epitaxial connection with a coherent lattice between the shells of the two neighboring quantum dots where the shell material and its dimensions dictate the quantum barrier characteristics for the charge carriers. Herein we introduce a colloidal approach to control the neck formation at the interface between the two CQDs in such artificial molecular constructs. This allows the tailoring of the neck barrier in prelinked homodimers formed via fusion of multifaceted wurtzite CdSe/CdS CQDs. The effects of reaction time, temperature, and excess ligands are studied. The neck filling process follows an intraparticle ripening mechanism at relatively mild reaction conditions while avoiding interparticle ripening. The degree of surface ligand passivation plays a key role in activating the surface atom diffusion to the neck region. The degree of neck filling strongly depends also on the initial relative orientation of the two CQDs, where homonymous plane attachment allows for facile neck growth, unlike the case of heteronymous plane attachment. Upon neck filling, the observed red-shift of the absorption and fluorescence measured both for ensemble and single dimers is assigned to enhanced hybridization of the confined wave function in CQD dimer molecules, as supported by quantum calculations. The fine-tuning of the particle interface introduced herein provides therefore a powerful tool to further control the extent of hybridization and coupling in CQD molecules.

5.
Nano Lett ; 21(23): 10032-10039, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34807613

ABSTRACT

Indium phosphide (InP) nanocrystals are emerging as an alternative to heavy metal containing nanocrystals for optoelectronic applications but lag behind in terms of synthetic control. Herein, luminescent wurtzite InP nanocrystals with narrow size distribution were synthesized via a cation exchange reaction from hexagonal Cu3P nanocrystals. A comprehensive surface treatment with NOBF4 was performed, which removes excess copper while generating stoichiometric In/P nanocrystals with fluoride surface passivation. The attained InP nanocrystals manifest a highly resolved absorption spectrum with a narrow emission line of 80 meV, and photoluminescence quantum yield of up to 40%. Optical anisotropy measurements on ensemble and single particle bases show the occurrence of polarized transitions directly mirroring the anisotropic wurtzite lattice, as also manifested from modeling of the quantum confined electronic levels. This shows a green synthesis path for achieving wurtzite InP nanocrystals with desired optoelectronic properties including color purity and light polarization with potential for diverse optoelectronic applications.


Subject(s)
Nanoparticles , Phosphines , Anisotropy , Indium/chemistry , Phosphines/chemistry
6.
Angew Chem Int Ed Engl ; 60(26): 14467-14472, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-33793047

ABSTRACT

Top-down fabricated nanoantenna architectures of both metallic and dielectric materials show powerful functionalities for Raman and fluorescence enhancement with relevance to single molecule sensing while inducing directionality of chromophore emission with implications for single photon sources. We synthesize the smallest bow-tie nanoantenna by selective tip-to-tip fusion of two tetrahedral colloidal quantum dots (CQDs) forming a dimer. While the tetrahedral monomers emit non-polarized light, the bow-tie architecture manifests nanoantenna functionality of enhanced emission polarization along the bow-tie axis, as predicted theoretically and revealed by single-particle spectroscopy. Theory also predicts the formation of an electric-field hotspot at the bow-tie epicenter. This is utilized for selective light-induced photocatalytic metal growth at that location, unlike growth on the free tips in dark conditions, thus demonstrating bow-tie dimer functionality as a photochemical reaction center.

7.
Nano Lett ; 21(3): 1461-1468, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33481610

ABSTRACT

Recently, it was demonstrated that charge separation in hybrid metal-semiconductor nanoparticles (HNPs) can be obtained following photoexcitation of either the semiconductor or of the localized surface plasmon resonance (LSPR) of the metal. This suggests the intriguing possibility of photocatalytic systems benefiting from both plasmon and exciton excitation, the main challenge being to outcompete other ultrafast relaxation processes. Here we study CdSe-Au HNPs using ultrafast spectroscopy with high temporal resolution. We describe the complete pathways of electron transfer for both semiconductor and LSPR excitation. In the former, we distinguish hot and band gap electron transfer processes in the first few hundred fs. Excitation of the LSPR reveals an ultrafast (<30 fs) electron transfer to CdSe, followed by back-transfer from the semiconductor to the metal within 210 fs. This study establishes the requirements for utilization of the combined excitonic-plasmonic contribution in HNPs for diverse photocatalytic applications.

8.
Acc Chem Res ; 54(5): 1178-1188, 2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33459013

ABSTRACT

ConspectusElectronic coupling and hence hybridization of atoms serves as the basis for the rich properties for the endless library of naturally occurring molecules. Colloidal quantum dots (CQDs) manifesting quantum strong confinement possess atomic-like characteristics with s and p electronic levels, which popularized the notion of CQDs as artificial atoms. Continuing this analogy, when two atoms are close enough to form a molecule so that their orbitals start overlapping, the orbitals energies start to split into bonding and antibonding states made out of hybridized orbitals. The same concept is also applicable for two fused core-shell nanocrystals in close proximity. Their band edge states, which dictate the emitted photon energy, start to hybridize, changing their electronic and optical properties. Thus, an exciting direction of "artificial molecules" emerges, leading to a multitude of possibilities for creating a library of new hybrid nanostructures with novel optoelectronic properties with relevance toward diverse applications including quantum technologies.The controlled separation and the barrier height between two adjacent quantum dots are key variables for dictating the magnitude of the coupling energy of the confined wave functions. In the past, coupled double quantum dot architectures prepared by molecular beam epitaxy revealed a coupling energy of few millielectron volts, which limits the applications to mostly cryogenic operation. The realization of artificial quantum molecules with sufficient coupling energy detectable at room temperature calls for the use of colloidal semiconductor nanocrystal building blocks. Moreover, the tunable surface chemistry widely opens the predesigned attachment strategies as well as the solution processing ability of the prepared artificial molecules, making the colloidal nanocrystals as an ideal candidate for this purpose. Despite several approaches that demonstrated enabling of the coupled structures, a general and reproducible method applicable to a broad range of colloidal quantum materials is needed for systematic tailoring of the coupling strength based on a dictated barrierThis Account addresses the development of nanocrystal chemistry to create coupled colloidal quantum dot molecules and to study the controlled electronic coupling and their emergent properties. The simplest nanocrystal molecule, a homodimer formed from two core/shell nanocrystal monomers, in analogy to homonuclear diatomic molecules, serves as a model system. The shell material of the two CQDs is structurally fused, resulting in a continuous crystal. This lowers the potential energy barrier, enabling the hybridization of the electronic wave functions. The direct manifestation of the hybridization reflects on the band edge transition shifting toward lower energy and is clearly resolved at room temperature. The hybridization energy within the single homodimer molecule is strongly correlated with the extent of structural continuity, the delocalization of the exciton wave function, and the barrier thickness as calculated numerically. The hybridization impacts the emitted photon statistics manifesting faster radiative decay rate, photon bunching effect, and modified Auger recombination pathway compared to the monomer artificial atoms. Future perspectives for the nanocrystals chemistry paradigm are also highlighted.

9.
Nat Commun ; 10(1): 5401, 2019 12 16.
Article in English | MEDLINE | ID: mdl-31844043

ABSTRACT

Coupling of atoms is the basis of chemistry, yielding the beauty and richness of molecules. We utilize semiconductor nanocrystals as artificial atoms to form nanocrystal molecules that are structurally and electronically coupled. CdSe/CdS core/shell nanocrystals are linked to form dimers which are then fused via constrained oriented attachment. The possible nanocrystal facets in which such fusion takes place are analyzed with atomic resolution revealing the distribution of possible crystal fusion scenarios. Coherent coupling and wave-function hybridization are manifested by a redshift of the band gap, in agreement with quantum mechanical simulations. Single nanoparticle spectroscopy unravels the attributes of coupled nanocrystal dimers related to the unique combination of quantum mechanical tunneling and energy transfer mechanisms. This sets the stage for nanocrystal chemistry to yield a diverse selection of coupled nanocrystal molecules constructed from controlled core/shell nanocrystal building blocks. These are of direct relevance for numerous applications in displays, sensing, biological tagging and emerging quantum technologies.

10.
J Chem Phys ; 151(22): 224501, 2019 Dec 14.
Article in English | MEDLINE | ID: mdl-31837660

ABSTRACT

Coupled colloidal quantum dot molecules composed of two fused CdSe/CdS core/shell sphere monomers were recently presented. Upon fusion, the potential energy landscape changes into two quantum dots separated by a pretuned potential barrier with energetics dictated by the conduction and valence band offsets of the core/shell semiconductors and the width controlled by the shell thickness and the fusion reaction conditions. In close proximity of the two nanocrystals, orbital hybridization occurs, forming bonding and antibonding states in analogy to the hydrogen molecule. In this study, we examine theoretically the electronic and optical signatures of such a quantum dot dimer compared to its monomer core/shell building-blocks. We examine the effects of different core sizes, barrier widths, different band offsets, and neck sizes at the interface of the fused facets on the system wave-functions and energetics. Due to the higher effective mass of the hole and the large valence band offset, the hole still essentially resides in either of the cores, breaking the symmetry of the potential for the electron as well. We found that the dimer signature is well expressed in a red shift of the band gap both in absorption and emission, in slower radiative lifetimes and in an absorption cross section which is significantly enhanced relative to the monomers at energies above the shell absorption onset, while remains essentially at the same level near the band-edge. This study provides essential guidance to predesign of coupled quantum dot molecules with specific attributes which can be utilized for various new opto-electronic applications.

11.
Nat Commun ; 10(1): 2, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30602734

ABSTRACT

Semiconductor heterostructure nanocrystals, especially with core/shell architectures, are important for numerous applications. Here we show that by decreasing the shell growth rate the morphology of ZnS shells on ZnSe quantum rods can be tuned from flat to islands-like, which decreases the interfacial strain energy. Further reduced growth speed, approaching the thermodynamic limit, leads to coherent shell growth forming unique helical-shell morphology. This reveals a template-free mechanism for induced chirality at the nanoscale. The helical morphology minimizes the sum of the strain and surface energy and maintains band gap emission due to its coherent core/shell interface without traps, unlike the other morphologies. Reaching the thermodynamic controlled growth regime for colloidal semiconductor core/shell nanocrystals thus offers morphologies with clear impact on their applicative potential.

12.
Angew Chem Int Ed Engl ; 57(16): 4274-4295, 2018 04 09.
Article in English | MEDLINE | ID: mdl-28975692

ABSTRACT

Colloidal semiconductor nanocrystals (SCNCs) or, more broadly, colloidal quantum nanostructures constitute outstanding model systems for investigating size and dimensionality effects. Their nanoscale dimensions lead to quantum confinement effects that enable tuning of their optical and electronic properties. Thus, emission color control with narrow photoluminescence spectra, wide absorbance spectra, and outstanding photostability, combined with their chemical processability through control of their surface chemistry leads to the emergence of SCNCs as outstanding materials for present and next-generation displays. In this Review, we present the fundamental chemical and physical properties of SCNCs, followed by a description of the advantages of different colloidal quantum nanostructures for display applications. The open challenges with respect to their optical activity are addressed. Both photoluminescent and electroluminescent display scenarios utilizing SCNCs are described.

13.
ACS Nano ; 11(7): 7312-7320, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28654241

ABSTRACT

For visible range emitting particles, which are relevant for display and additional applications, Cd-chalcogenide nanocrystals have reached the highest degree of control and performance. Considering potential toxicity and regulatory limitations, there is a challenge to successfully develop Cd-free emitting nanocrystals and, in particular, heterostructures with desirable properties. Herein, we report a colloidal synthesis of fluorescent heavy-metal-free Zn-chalcogenide semiconductor nanodumbbells (NDBs), in which ZnSe tips were selectively grown on the apexes of ZnTe rods, as evidenced by a variety of methods. The fluorescence of the NDBs can be tuned between ∼500 and 585 nm by changing the ZnSe tip size. The emission quantum yield can be greatly increased through chloride surface treatment and reaches more than 30%. Simulations within an effective-mass-based model show that the hole wave function is spread over the ZnTe nanorods, while the electron wave function is localized on the ZnSe tips. Quantitative agreement for the red-shifted emission wavelength is obtained between the simulations and the experiments. Additionally, the changes in radiative lifetimes correlate well with the calculated decrease in electron-hole overlap upon growth of larger ZnSe tips. The heavy-metal-free ZnTe/ZnSe NDBs may be relevant for optoelectronic applications such as displays or light-emitting diodes.

14.
Nano Lett ; 17(4): 2524-2531, 2017 04 12.
Article in English | MEDLINE | ID: mdl-28221804

ABSTRACT

Seeded semiconductor nanorods represent a unique family of quantum confined materials that manifest characteristics of mixed dimensionality. They show polarized emission with high quantum yield and fluorescence switching under an electric field, features that are desirable for use in display technologies and other optical applications. So far, their robust synthesis has been limited mainly to CdSe/CdS heterostructures, thereby constraining the spectral tunability to the red region of the visible spectrum. Herein we present a novel synthesis of CdSe/Cd1-xZnxS seeded nanorods with a radially graded composition that show bright and highly polarized green emission with minimal intermittency, as confirmed by ensemble and single nanorods optical measurements. Atomistic pseudopotential simulations elucidate the importance of the Zn atoms within the nanorod structure, in particular the effect of the graded composition. Thus, the controlled addition of Zn influences and improves the nanorods' optoelectronic performance by providing an additional handle to manipulate the degree confinement beyond the common size control approach. These nanorods may be utilized in applications that require the generation of a full, rich spectrum such as energy-efficient displays and lighting.

SELECTION OF CITATIONS
SEARCH DETAIL
...