Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Rep ; 41(9): 1895-1906, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35794394

ABSTRACT

KEY MESSAGE: FvSnRK2182 is involved in regulating the growth and stress response. SnRK2 family members are positive regulators of downstream signals in the abscisic acid (ABA) signaling pathway, playing key roles in the plant responses to abiotic stresses. Fraxinus velutina Torr. is a candidate phytoremediator of saline-alkali areas, and is a valuable research subject because of its adaptability in saline soil. We identified a SnRK2 gene in F. velutina (named FvSnRK2182), which was significantly upregulated under salt stress. A bioinformatics analysis showed that FvSnRK2182 has a Ser/Thr kinase domain typical of the SnRK2 subfamily. Compared with wild-type (WT) Arabidopsis, its heterologous expression in Arabidopsis resulted in higher auxin content during seed germination and seedling growth, leading to longer primary roots and more lateral roots. The transgenic lines were better able to tolerate treatments with NaCl (100 mM) and/or ABA (0.2 and 0.5 µM), producing a greater biomass than the WT plants. Under NaCl treatment, the shoots of the transgenic lines had lower Na+ contents and higher K+ contents than the WT plants, and the genes encoding the ion transport-related proteins SOS1, HKT1, NHX1, and AKT1 were significantly upregulated. In addition, the expression of the genes functioning downstream of SnRK2 in the ABA signaling pathway (Rboh, AREB4, ABF2, and ABF3) were significantly upregulated in transgenic lines under NaCl stress. These results showed that expressing FvSnRK2182 in Arabidopsis significantly increased their resistance to ABA and salt stress by regulating root development and maintaining ion homeostasis, which suggests that FvSnRK2182 may be involved in regulating the growth and stress response of F. velutina.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Fraxinus , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Fraxinus/genetics , Fraxinus/metabolism , Gene Expression Regulation, Plant , Germination , Homeostasis , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Protein Serine-Threonine Kinases/genetics , Salt Tolerance/genetics , Sodium Chloride/metabolism , Sodium Chloride/pharmacology , Stress, Physiological/genetics
2.
Environ Sci Technol ; 56(14): 9854-9871, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35635373

ABSTRACT

The severe hazard of chlorinated volatile organic compounds (CVOCs) to human health and the natural environment makes their abatement technology a key topic of global environmental research. Due to the existence of Cl, the byproducts of CVOCs in the catalytic combustion process are complex and toxic, and the possible generation of dioxin becomes a potential risk to the environment. Well-qualified CVOC catalysts should process favorable low-temperature catalytic oxidation ability, excellent selectivity, and good resistance to poisoning, which are governed by the reasonable adjustment of acidity and redox properties. This review overviews the application of different types of multicomponent catalysts, that is, supported noble metal catalysts, transition metal oxide/zeolite catalysts, composite transition metal oxide catalysts, and acid-modified catalysts, for CVOC degradation from the perspective of balance between acidity and redox properties. This review also highlights the synergistic degradation of CVOCs and NOx from the perspective of acidity and redox properties. We expect this work to inspire and guide researchers from both the academic and industrial communities and help pave the way for breakthroughs in fundamental research and industrial applications in this field.


Subject(s)
Volatile Organic Compounds , Catalysis , Humans , Metals , Oxidation-Reduction , Oxides
3.
Environ Sci Technol ; 56(3): 1905-1916, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34856794

ABSTRACT

The development of highly efficient and stable monolithic catalysts is essential for the removal of volatile organic compounds (VOCs). Copper foam (CF) is a potential ideal carrier for monolithic catalysts, but its low surface area is not conducive to dispersion of active species, thus reducing the interface interaction with active species. Herein, a vertically oriented Cu(OH)2 nanorod was in situ grown on the CF, which acted as the template and precursor to synthesize CoCu-MOF. The optimized catalyst (12CoCu-R) delivers excellent performance for acetone oxidation with a T90 of 195 °C. Impressively, the catalyst demonstrated satisfactory stability in long-term, cycle, water resistance, and high airspeed tests. Therefore, the present study provides a novel strategy for rationally designing efficient monolithic catalysts for VOC oxidation and other environmental applications.

4.
Physiol Plant ; 143(4): 355-66, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21895668

ABSTRACT

To evaluate the physiological importance of chloroplastic ascorbate peroxidase (CHLAPX) in the reactive oxygen species (ROS)-scavenging system of a euhalophyte, we cloned the CHLAPX of Suaeda salsa (SsCHLAPX) encoding stromal APX (sAPX) and thylakoid-bound APX. The stromal APX of S. salsa (Ss.sAPX) cDNA consists of 1726 nucleotides including an 1137-bp open reading frame (ORF) and encodes 378 amino acids. The thylakoid-bound APX of S. salsa (Ss.tAPX) cDNA consists of 1561 nucleotides, including a 1284-bp ORF, and encodes 427 amino acids. The N-terminal 378 amino acids of Ss.sAPX are identical with those of Ss.tAPX, whereas the C-terminal 49 amino acids differ. Arabidopsis thaliana lines overexpressing Ss.sAPX and Ss.tAPX were constructed using Agrobacterium tumefaciens transformation methods. Under high light (1000 µmol m⁻² s⁻¹), malondialdehyde (MDA) content was lower in transgenic plants than in the wild type. Under high light, Fv/Fm and chlorophyll contents of both overexpressing lines and the wild type declined but were significantly higher in the overexpressing lines than in the wild type. The activities of APX (EC 1.11.1.11), catalase (CAT 1.11.1.6) and superoxide dismutase (SOD EC 1.15.1.1) were higher in the overexpressing lines than in the wild type. The transgenic plants showed increased tolerance to oxidative stress caused by high light. These results suggest that SsCHLAPX plays an important role in scavenging ROS in chloroplasts under stress conditions such as high light.


Subject(s)
Arabidopsis/enzymology , Ascorbate Peroxidases/metabolism , Light , Oxidative Stress , Plant Proteins/metabolism , Thylakoid Membrane Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/radiation effects , Ascorbate Peroxidases/genetics , Catalase/metabolism , Chenopodiaceae/genetics , Chlorophyll/analysis , Chloroplasts/metabolism , Cloning, Molecular , DNA, Plant/genetics , Gene Expression Regulation, Plant , Lipid Peroxidation , Malondialdehyde/analysis , Open Reading Frames , Plant Proteins/genetics , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/radiation effects , Reactive Oxygen Species/metabolism , Sequence Analysis, DNA , Superoxide Dismutase/metabolism , Thylakoid Membrane Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...