Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Heliyon ; 10(5): e27369, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38486774

ABSTRACT

Background: Heart rate, as the four vital signs of human body, is a basic indicator to measure a person's health status. Traditional electrocardiography (ECG) measurement, which is routinely monitored, requires subjects to wear lead electrodes frequently, which undoubtedly places great restrictions on participants' activities during the normal test. At present, the boom of wearable devices has created hope for non-invasive, simple operation and low-cost daily heart rate monitoring, among them, Ballistocardiogram signal (BCG) is an effective heart rate measurement method, but in the actual acquisition process, the robustness of non-invasive vital sign collection is limited. Therefore, it is necessary to develop a method to improve the robustness of heart rate monitoring. Objective: Therefore, in view of the problem that the accuracy of untethered monitoring heart rate is not high, we propose a method aimed at detecting the heartbeat cycle based on BCG to accurately obtain the beat-to-beat heart rate in the sleep state. Methods: In this study, we implement an innovative J-wave detection algorithm based on BCG signals. By collecting BCG signals recorded by 28 healthy subjects in different sleeping positions, after preprocessing, the data feature set is formed according to the clustering of morphological features in the heartbeat interval. Finally, a J-wave recognition model is constructed based on bi-directional long short-term memory (BiLSTM), and then the number of J-waves in the input sequence is counted to realize real-time detection of heartbeat. The performance of the proposed heartbeat detection scheme is cross-verified, and the proposed method is compared with the previous wearable device algorithm. Results: The accuracy of J wave recognition in BCG signal is 99.67%, and the deviation rate of heart rate detection is only 0.27%, which has higher accuracy than previous wearable device algorithms. To assess consistency between method results and heart rates obtained by the ECG, seven subjects are compared using Bland-Altman plots, which show no significant difference between BCG and ECG results for heartbeat cycles. Conclusions: Compared with other studies, the proposed method is more accurate in J-wave recognition, which improves the accuracy and generalization ability of BCG-based continuous heartbeat cycle extraction, and provides preliminary support for wearable-based untethered daily monitoring.

2.
Braz J Med Biol Res ; 55: e11504, 2022.
Article in English | MEDLINE | ID: mdl-35019033

ABSTRACT

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases in the elderly. The aim of this study was to explore the effects of AD on cardiac function and autonomic nervous function, and the feasibility of electrocardiogram (ECG) in monitoring the development of AD. APP/PS1 double transgenic mice were used in the Morris water maze (MWM) experiment to evaluate the changes of cognitive ability of AD mice, then the non-invasive ECG acquisition system was used and the changes of ECG intervals and heart rate variability (HRV) were analyzed. AD mice already had cognitive dysfunction at the age of 5 months, reaching the level of mild dementia, and the degree of dementia increased with the course of disease. There were no significant changes in ECG intervals in the AD group at each month. The mean square of successive RR interval differences, percentage of intervals >6 ms different from preceding interval, and normalized high frequency power component in the AD group were decreased and low-to-high frequency power ratio and normalized low frequency power component were increased. Combined with the results of the MWM, it was shown that the regulation mechanism of sympathetic and parasympathetic nerves in mice was already imbalanced in early stage AD, which was manifested as the increase of excessive activity of sympathetic nerves and the inhibition of parasympathetic activities. Therefore, ECG-based analysis of HRV may become a means of daily monitoring of AD and provide an auxiliary basis for clinical diagnosis.


Subject(s)
Alzheimer Disease , Animals , Electrocardiography , Heart , Heart Rate , Mice , Sympathetic Nervous System
3.
Braz. j. med. biol. res ; 55: e11504, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1355915

ABSTRACT

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases in the elderly. The aim of this study was to explore the effects of AD on cardiac function and autonomic nervous function, and the feasibility of electrocardiogram (ECG) in monitoring the development of AD. APP/PS1 double transgenic mice were used in the Morris water maze (MWM) experiment to evaluate the changes of cognitive ability of AD mice, then the non-invasive ECG acquisition system was used and the changes of ECG intervals and heart rate variability (HRV) were analyzed. AD mice already had cognitive dysfunction at the age of 5 months, reaching the level of mild dementia, and the degree of dementia increased with the course of disease. There were no significant changes in ECG intervals in the AD group at each month. The mean square of successive RR interval differences, percentage of intervals >6 ms different from preceding interval, and normalized high frequency power component in the AD group were decreased and low-to-high frequency power ratio and normalized low frequency power component were increased. Combined with the results of the MWM, it was shown that the regulation mechanism of sympathetic and parasympathetic nerves in mice was already imbalanced in early stage AD, which was manifested as the increase of excessive activity of sympathetic nerves and the inhibition of parasympathetic activities. Therefore, ECG-based analysis of HRV may become a means of daily monitoring of AD and provide an auxiliary basis for clinical diagnosis.

4.
Article in English | MEDLINE | ID: mdl-34306140

ABSTRACT

Complementary therapies, such as acupuncture and massage, had been previously reported to have therapeutic effects on skeletal muscle contusions. However, the recovery mechanisms on skeletal muscles after blunt trauma via the combination of electroacupuncture (EA) and massage therapy remain unclear. In the present study, a rat model of the skeletal muscle fibrosis following blunt trauma to rat skeletal muscle was established, and the potential molecular mechanisms of EA + massage therapy on the skeletal muscle fibrosis were investigated. The results suggested that EA + massage therapy could significantly decrease inflammatory cells infiltration and collagenous fiber content and ameliorate the disarrangement of sarcomeres within myofibrils compared to the model group. Further analysis revealed that EA + massage therapy could reduce the degree of fibrosis and increase the degree of myofibroblast apoptosis by downregulating the mRNA and protein expression of transforming growth factor- (TGF-) ß1 and connective tissue growth factor (CTGF). Furthermore, the fibrosis of injured skeletal muscle was inhibited after treatment through the normalization of balance between matrix metalloproteinase- (MMP-) 1 and tissue inhibitor of matrix metalloproteinase (TIMP). These findings suggested that the combination of electroacupuncture and massage therapy could alleviate the fibrotic process by regulating TGF ß1-CTGF-induced myofibroblast transdifferentiation and MMP-1/TIMP-1 balance for extracellular matrix production.

SELECTION OF CITATIONS
SEARCH DETAIL
...