Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Signal Transduct Target Ther ; 8(1): 148, 2023 04 07.
Article in English | MEDLINE | ID: mdl-37029108

ABSTRACT

The CLKs (Cdc2-like kinases) belong to the dual-specificity protein kinase family and play crucial roles in regulating transcript splicing via the phosphorylation of SR proteins (SRSF1-12), catalyzing spliceosome molecular machinery, and modulating the activities or expression of non-splicing proteins. The dysregulation of these processes is linked with various diseases, including neurodegenerative diseases, Duchenne muscular dystrophy, inflammatory diseases, viral replication, and cancer. Thus, CLKs have been considered as potential therapeutic targets, and significant efforts have been exerted to discover potent CLKs inhibitors. In particular, clinical trials aiming to assess the activities of the small molecules Lorecivivint on knee Osteoarthritis patients, and Cirtuvivint and Silmitasertib in different advanced tumors have been investigated for therapeutic usage. In this review, we comprehensively documented the structure and biological functions of CLKs in various human diseases and summarized the significance of related inhibitors in therapeutics. Our discussion highlights the most recent CLKs research, paving the way for the clinical treatment of various human diseases.


Subject(s)
Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Humans , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Phosphorylation , RNA Splicing , Protein Processing, Post-Translational , Serine-Arginine Splicing Factors
2.
Int J Mol Sci ; 23(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36499418

ABSTRACT

Mycothiol (MSH), the major cellular thiol in Mycobacterium tuberculosis (Mtb), plays an essential role in the resistance of Mtb to various antibiotics and oxidative stresses. MshC catalyzes the ATP-dependent ligation of 1-O-(2-amino-2-deoxy-α-d-glucopyranosyl)-d-myo-inositol (GlcN-Ins) with l-cysteine (l-Cys) to form l-Cys-GlcN-Ins, the penultimate step in MSH biosynthesis. The inhibition of MshC is lethal to Mtb. In the present study, five new cysteinyl-sulfonamides were synthesized, and their binding affinity with MshC was evaluated using a thermal shift assay. Two of them bind the target with EC50 values of 219 and 231 µM. Crystal structures of full-length MshC in complex with these two compounds showed that they were bound in the catalytic site of MshC, inducing dramatic conformational changes of the catalytic site compared to the apo form. In particular, the observed closure of the KMSKS loop was not detected in the published cysteinyl-sulfamoyl adenosine-bound structure, the latter likely due to trypsin treatment. Despite the confirmed binding to MshC, the compounds did not suppress Mtb culture growth, which might be explained by the lack of adequate cellular uptake. Taken together, these novel cysteinyl-sulfonamide MshC inhibitors and newly reported full-length apo and ligand-bound MshC structures provide a promising starting point for the further development of novel anti-tubercular drugs targeting MshC.


Subject(s)
Ligases , Mycobacterium tuberculosis , Bacterial Proteins/metabolism , Cysteine/metabolism , Glycopeptides/chemistry , Inositol/metabolism , Ligases/metabolism , Mycobacterium smegmatis/metabolism , Mycobacterium tuberculosis/metabolism , Sulfonamides/pharmacology
3.
Commun Biol ; 5(1): 883, 2022 08 29.
Article in English | MEDLINE | ID: mdl-36038645

ABSTRACT

To correctly aminoacylate tRNALeu, leucyl-tRNA synthetase (LeuRS) catalyzes three reactions: activation of leucine by ATP to form leucyl-adenylate (Leu-AMP), transfer of this amino acid to tRNALeu and post-transfer editing of any mischarged product. Although LeuRS has been well characterized biochemically, detailed structural information is currently only available for the latter two stages of catalysis. We have solved crystal structures for all enzymatic states of Neisseria gonorrhoeae LeuRS during Leu-AMP formation. These show a cycle of dramatic conformational changes, involving multiple domains, and correlate with an energetically unfavorable peptide-plane flip observed in the active site of the pre-transition state structure. Biochemical analyses, combined with mutant structural studies, reveal that this backbone distortion acts as a trigger, temporally compartmentalizing the first two catalytic steps. These results unveil the remarkable effect of this small structural alteration on the global dynamics and activity of the enzyme.


Subject(s)
Leucine-tRNA Ligase , RNA, Transfer, Leu , Catalysis , Catalytic Domain , Leucine-tRNA Ligase/chemistry , Leucine-tRNA Ligase/genetics , Leucine-tRNA Ligase/metabolism , Peptides , RNA, Transfer, Leu/metabolism
4.
Acta Pharm Sin B ; 12(5): 2193-2205, 2022 May.
Article in English | MEDLINE | ID: mdl-35646549

ABSTRACT

N6-Methyladenosine (m6A) is the most abundant internal modification in eukaryotic mRNA, playing critical role in various bioprocesses. Like other epigenetic modifications, m6A modification can be catalyzed by the methyltransferase complex and erased dynamically to maintain cells homeostasis. Up to now, only two m6A demethylases have been reported, fat mass and obesity-associated protein (FTO) and alkylation protein AlkB homolog 5 (ALKBH5), involving in a wide range of mRNA biological progress, including mRNA shearing, export, metabolism and stability. Furthermore, they participate in many significantly biological signaling pathway, and contribute to the progress and development of cancer along with other diseases. In this review, we focus on the studies about structure, inhibitors development and biological function of FTO and ALKBH5.

5.
Int J Mol Sci ; 22(15)2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34360555

ABSTRACT

Human cytosolic prolyl-tRNA synthetase (HcProRS) catalyses the formation of the prolyl-tRNAPro, playing an important role in protein synthesis. Inhibition of HcProRS activity has been shown to have potential benefits in the treatment of fibrosis, autoimmune diseases and cancer. Recently, potent pyrazinamide-based inhibitors were identified by a high-throughput screening (HTS) method, but no further elaboration was reported. The pyrazinamide core is a bioactive fragment found in numerous clinically validated drugs and has been subjected to various modifications. Therefore, we applied a virtual screening protocol to our in-house library of pyrazinamide-containing small molecules, searching for potential novel HcProRS inhibitors. We identified a series of 3-benzylaminopyrazine-2-carboxamide derivatives as positive hits. Five of them were confirmed by a thermal shift assay (TSA) with the best compounds 3b and 3c showing EC50 values of 3.77 and 7.34 µM, respectively, in the presence of 1 mM of proline (Pro) and 3.45 µM enzyme concentration. Co-crystal structures of HcProRS in complex with these compounds and Pro confirmed the initial docking studies and show how the Pro facilitates binding of the ligands that compete with ATP substrate. Modelling 3b into other human class II aminoacyl-tRNA synthetases (aaRSs) indicated that the subtle differences in the ATP binding site of these enzymes likely contribute to its potential selective binding of HcProRS. Taken together, this study successfully identified novel HcProRS binders from our anti-tuberculosis in-house compound library, displaying opportunities for repurposing old drug candidates for new applications such as therapeutics in HcProRS-related diseases.


Subject(s)
Adenosine Triphosphate/metabolism , Amino Acyl-tRNA Synthetases/antagonists & inhibitors , Biological Assay/methods , Computer Simulation , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Pyrazinamide/chemistry , Binding Sites , Crystallography, X-Ray , Enzyme Inhibitors/isolation & purification , Humans , Ligands , Models, Molecular , Protein Conformation
6.
Int J Mol Sci ; 22(4)2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33578647

ABSTRACT

Aminoacyl-tRNA synthetases (aaRSs) catalyze the esterification of tRNA with a cognate amino acid and are essential enzymes in all three kingdoms of life. Due to their important role in the translation of the genetic code, aaRSs have been recognized as suitable targets for the development of small molecule anti-infectives. In this review, following a concise discussion of aaRS catalytic and proof-reading activities, the various inhibitory mechanisms of reported natural and synthetic aaRS inhibitors are discussed. Using the expanding repository of ligand-bound X-ray crystal structures, we classified these compounds based on their binding sites, focusing on their ability to compete with the association of one, or more of the canonical aaRS substrates. In parallel, we examined the determinants of species-selectivity and discuss potential resistance mechanisms of some of the inhibitor classes. Combined, this structural perspective highlights the opportunities for further exploration of the aaRS enzyme family as antimicrobial targets.


Subject(s)
Amino Acyl-tRNA Synthetases/antagonists & inhibitors , Anti-Infective Agents/pharmacology , Drug Discovery , Enzyme Inhibitors/pharmacology , Amino Acids/metabolism , Amino Acyl-tRNA Synthetases/chemistry , Amino Acyl-tRNA Synthetases/metabolism , Animals , Anti-Infective Agents/chemistry , Binding Sites/drug effects , Enzyme Inhibitors/chemistry , Humans , Models, Molecular , Molecular Targeted Therapy
7.
Eur J Med Chem ; 211: 113021, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33248851

ABSTRACT

Leucyl-tRNA synthetase (LeuRS) is a clinically validated target for the development of antimicrobials. This enzyme catalyzes the formation of charged tRNALeu molecules, an essential substrate for protein translation. In the first step of catalysis LeuRS activates leucine using ATP, forming a leucyl-adenylate intermediate. Bi-substrate inhibitors that mimic this chemically labile phosphoanhydride-linked nucleoside have proven to be potent inhibitors of different members of the aminoacyl-tRNA synthetase family but, to date, they have demonstrated poor antibacterial activity. We synthesized a small series of 1,5-anhydrohexitol-based analogues coupled to a variety of triazoles and performed detailed structure-activity relationship studies with bacterial LeuRS. In an in vitro assay, Kiapp values in the nanomolar range were demonstrated. Inhibitory activity differences between the compounds revealed that the polarity and size of the triazole substituents affect binding. X-ray crystallographic studies of N. gonorrhoeae LeuRS in complex with all the inhibitors highlighted the crucial interactions defining their relative enzyme inhibitory activities. We further examined their in vitro antimicrobial properties by screening against several bacterial and yeast strains. While only weak antibacterial activity against M. tuberculosis was detected, the extensive structural data which were obtained could make these LeuRS inhibitors a suitable starting point towards further antibiotic development.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Enzyme Inhibitors/pharmacology , Leucine-tRNA Ligase/antagonists & inhibitors , Sugar Alcohols/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Candida albicans/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Escherichia coli/drug effects , Escherichia coli/enzymology , Leucine-tRNA Ligase/isolation & purification , Leucine-tRNA Ligase/metabolism , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Mycobacterium tuberculosis/drug effects , Neisseria gonorrhoeae/enzymology , Staphylococcus aureus/drug effects , Structure-Activity Relationship , Sugar Alcohols/chemical synthesis , Sugar Alcohols/chemistry
8.
Molecules ; 25(20)2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33081246

ABSTRACT

Aminoacyl-tRNA synthetases (aaRSs) have become viable targets for the development of antimicrobial agents due to their crucial role in protein translation. A series of six amino acids were coupled to the purine-like 7-amino-5-hydroxymethylbenzimidazole nucleoside analogue following an optimized synthetic pathway. These compounds were designed as aaRS inhibitors and can be considered as 1,3-dideazaadenine analogues carrying a 2-hydroxymethyl substituent. Despite our intentions to obtain N1-glycosylated 4-aminobenzimidazole congeners, resembling the natural purine nucleosides glycosylated at the N9-position, we obtained the N3-glycosylated benzimidazole derivatives as the major products, resembling the respective purine N7-glycosylated nucleosides. A series of X-ray crystal structures of class I and II aaRSs in complex with newly synthesized compounds revealed interesting interactions of these "base-flipped" analogues with their targets. While the exocyclic amine of the flipped base mimics the reciprocal interaction of the N3-purine atom of aminoacyl-sulfamoyl adenosine (aaSA) congeners, the hydroxymethyl substituent of the flipped base apparently loses part of the standard interactions of the adenine N1 and the N6-amine as seen with aaSA analogues. Upon the evaluation of the inhibitory potency of the newly obtained analogues, nanomolar inhibitory activities were noted for the leucine and isoleucine analogues targeting class I aaRS enzymes, while rather weak inhibitory activity against the corresponding class II aaRSs was observed. This class bias could be further explained by detailed structural analysis.


Subject(s)
Amino Acyl-tRNA Synthetases/ultrastructure , Benzimidazoles/chemistry , Enzyme Inhibitors/chemical synthesis , Ribonucleosides/chemistry , Amino Acyl-tRNA Synthetases/antagonists & inhibitors , Amino Acyl-tRNA Synthetases/chemistry , Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacology , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Neisseria gonorrhoeae/chemistry , Neisseria gonorrhoeae/enzymology , Neisseria gonorrhoeae/pathogenicity , Protein Conformation/drug effects , Structure-Activity Relationship
9.
Bioorg Med Chem ; 28(17): 115645, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32773091

ABSTRACT

Despite of proven efficacy and well tolerability, albomycin is not used clinically due to scarcity of material. Several attempts have been made to increase the production of albomycin by chemical or biochemical methods. In the current study, we have synthesized the active moiety of albomycin δ1 and investigated its binding mode to its molecular target seryl-trna synthetase (SerRS). In addition, isoleucyl and aspartyl congeners were prepared to investigate whether the albomycin scaffold can be extrapolated to target other aminoacyl-tRNA synthetases (aaRSs) from both class I and class II aaRSs, respectively. The synthesized analogues were evaluated for their ability to inhibit the corresponding aaRSs by an in vitro aminoacylation experiment using purified enzymes. It was observed that the diastereomer having the 5'S, 6'R-configuration (nucleoside numbering) as observed in the crystal structure, exhibits excellent inhibitory activity in contrast to poor activity of its companion 5'R,6'S-diasteromer obtained as byproduct during synthesis. Moreover, the albomycin core scaffold seems well tolerated for class II aaRSs inhibition compared with class I aaRSs. To understand this bias, we studied X-ray crystal structures of SerRS in complex with the albomycin δ1 core structure 14a, and AspRS in complex with compound 16a. Structural analysis clearly showed that diastereomer selectivity is attributed to the steric restraints of the active site of SerRS and AspRS.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Ferrichrome/analogs & derivatives , Serine-tRNA Ligase/metabolism , Binding Sites , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Ferrichrome/chemical synthesis , Ferrichrome/chemistry , Ferrichrome/metabolism , Ligands , Molecular Dynamics Simulation , Serine-tRNA Ligase/antagonists & inhibitors , Trypanosoma brucei brucei/enzymology
10.
Bioorg Med Chem ; 28(15): 115580, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32631562

ABSTRACT

Antimicrobial resistance is considered as one of the major threats for the near future as the lack of effective treatments for various infections would cause more deaths than cancer by 2050. The development of new antibacterial drugs is considered as one of the cornerstones to tackle this problem. Aminoacyl-tRNA synthetases (aaRSs) are regarded as good targets to establish new therapies. Apart from being essential for cell viability, they are clinically validated. Indeed, mupirocin, an isoleucyl-tRNA synthetase (IleRS) inhibitor, is already commercially available as a topical treatment for MRSA infections. Unfortunately, resistance developed soon after its introduction on the market, hampering its clinical use. Therefore, there is an urgent need for new cellular targets or improved therapies. Follow-up research by Cubist Pharmaceuticals led to a series of selective and in vivo active aminoacyl-sulfamoyl aryltetrazole inhibitors targeting IleRS (e.g. CB 168). Here, we describe the synthesis of new IleRS and TyrRS inhibitors based on the Cubist Pharmaceuticals compounds, whereby the central ribose was substituted for a tetrahydropyran ring. Various linkers were evaluated connecting the six-membered ring with the base-mimicking part of the synthesized analogues. Out of eight novel molecules, a three-atom spacer to the phenyltriazole moiety, which was established using azide-alkyne click chemistry, appeared to be the optimized linker to inhibit IleRS. However, 11 (Ki,app = 88 ± 5.3 nM) and 36a (Ki,app = 114 ± 13.5 nM) did not reach the same level of inhibitory activity as for the known high-affinity natural adenylate-intermediate analogue isoleucyl-sulfamoyl adenosine (IleSA, CB 138; Ki,app = 1.9 ± 4.0 nM) and CB 168, which exhibit a comparable inhibitory activity as the native ligand. Therefore, 11 was docked into the active site of IleRS using a known crystal structure of T. thermophilus in complex with mupirocin. Here, we observed the loss of the crucial 3'- and 4'- hydroxyl group interactions with the target enzyme compared to CB 168 and mupirocin, which we suggest to be the reason for the limited decrease in enzyme affinity. Despite the lack of antibacterial activity, we believe that structurally optimizing these novel analogues via a structure-based approach could ultimately result in aaRS inhibitors which would help to tackle the antibiotic resistance problem.


Subject(s)
Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/pharmacology , Isoleucine-tRNA Ligase/antagonists & inhibitors , Sulfonic Acids/pharmacology , Triazoles/pharmacology , Tyrosine-tRNA Ligase/antagonists & inhibitors , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/metabolism , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Candida/drug effects , Catalytic Domain , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Escherichia coli/drug effects , Isoleucine-tRNA Ligase/chemistry , Isoleucine-tRNA Ligase/metabolism , Microbial Sensitivity Tests , Molecular Docking Simulation , Mycobacterium tuberculosis/drug effects , Protein Binding , Staphylococcus aureus/drug effects , Sulfonic Acids/chemical synthesis , Sulfonic Acids/metabolism , Thermus thermophilus/enzymology , Triazoles/chemical synthesis , Triazoles/metabolism , Tyrosine-tRNA Ligase/chemistry , Tyrosine-tRNA Ligase/metabolism
11.
ACS Chem Biol ; 15(2): 407-415, 2020 02 21.
Article in English | MEDLINE | ID: mdl-31869198

ABSTRACT

The pyrimidine-containing Trojan horse antibiotics albomycin and a recently discovered cytidine-containing microcin C analog target the class II seryl- and aspartyl-tRNA synthetases (serRS and aspRS), respectively. The active components of these compounds are competitive inhibitors that mimic the aminoacyl-adenylate intermediate. How they effectively substitute for the interactions mediated by the canonical purine group is unknown. Employing nonhydrolyzable aminoacyl-sulfamoyl nucleosides substituting the base with cytosine, uracil, and N3-methyluracil the structure-activity relationship of the natural compounds was evaluated. In vitro using E. coli serRS and aspRS, the best compounds demonstrated IC50 values in the low nanomolar range, with a clear preference for cytosine or N3-methyluracil over uracil. X-ray crystallographic structures of K. pneumoniae serRS and T. thermophilus aspRS in complex with the compounds showed the contribution of structured waters and residues in the conserved motif-2 loop in defining base preference. Utilizing the N3-methyluracil bound serRS structure, MD simulations of the fully modified albomycin base were performed to identify the interacting network that drives stable association. This analysis pointed to key interactions with a methionine in the motif-2 loop. Interestingly, this residue is mutated to a glycine in a second serRS (serRS2) found in albomycin-producing actinobacteria possessing self-immunity to this antibiotic. A comparative study demonstrated that serRS2 is poorly inhibited by the pyrimidine-containing intermediate analogs, and an equivalent mutation in E. coli serRS significantly decreased the affinity of the cytosine congener. These findings highlight the crucial role of dynamics and solvation of the motif-2 loop in modulating the binding of the natural antibiotics.


Subject(s)
Anti-Bacterial Agents/metabolism , Aspartate-tRNA Ligase/antagonists & inhibitors , Bacterial Proteins/antagonists & inhibitors , Enzyme Inhibitors/metabolism , Pyrimidine Nucleosides/metabolism , Serine-tRNA Ligase/antagonists & inhibitors , Amino Acid Sequence , Anti-Bacterial Agents/chemistry , Aspartate-tRNA Ligase/genetics , Aspartate-tRNA Ligase/metabolism , Bacteria/enzymology , Bacteria/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/drug effects , Drug Resistance, Bacterial/genetics , Enzyme Inhibitors/chemistry , Molecular Dynamics Simulation , Molecular Structure , Multigene Family , Mutation , Protein Binding , Pyrimidine Nucleosides/chemistry , Serine-tRNA Ligase/genetics , Serine-tRNA Ligase/metabolism , Structure-Activity Relationship
12.
Antibiotics (Basel) ; 8(4)2019 Oct 09.
Article in English | MEDLINE | ID: mdl-31600972

ABSTRACT

Emerging antibiotic resistance in pathogenic bacteria and reduction of compounds in the existing antibiotics discovery pipeline is the most critical concern for healthcare professionals. A potential solution aims to explore new or existing targets/compounds. Inhibition of bacterial aminoacyl-tRNA synthetase (aaRSs) could be one such target for the development of antibiotics. The aaRSs are a group of enzymes that catalyze the transfer of an amino acid to their cognate tRNA and therefore play a pivotal role in translation. Thus, selective inhibition of these enzymes could be detrimental to microbes. The 5'-O-(N-(L-aminoacyl)) sulfamoyladenosines (aaSAs) are potent inhibitors of the respective aaRSs, however due to their polarity and charged nature they cannot cross the bacterial membranes. In this work, we increased the lipophilicity of these existing aaSAs in an effort to promote their penetration through the bacterial membrane. Two strategies were followed, either attaching a (permanent) alkyl moiety at the adenine ring via alkylation of the N6-position or introducing a lipophilic biodegradable prodrug moiety at the alpha-terminal amine, totaling eight new aaSA analogues. All synthesized compounds were evaluated in vitro using either a purified Escherichia coli aaRS enzyme or in presence of total cellular extract obtained from E. coli. The prodrugs showed comparable inhibitory activity to the parent aaSA analogues, indicating metabolic activation in cellular extracts, but had little effect on bacteria. During evaluation of the N6-alkylated compounds against different microbes, the N6-octyl containing congener 6b showed minimum inhibitory concentration (MIC) of 12.5 µM against Sarcina lutea while the dodecyl analogue 6c displayed MIC of 6.25 µM against Candida albicans.

13.
Eur J Med Chem ; 174: 252-264, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31048140

ABSTRACT

The superfamily of adenylate-forming enzymes all share a common chemistry. They activate a carboxylate group, on a specific substrate, by catalyzing the formation of a high energy mixed phosphoanhydride-linked nucleoside intermediate. Members of this diverse enzymatic family play key roles in a variety of metabolic pathways and therefore many have been regarded as drug targets. A generic approach to inhibit such enzymes is the use of non-hydrolysable sulfur-based bioisosteres of the adenylate intermediate. Here we compare the activity of compounds containing a sulfamoyl and sulfonamide linker respectively. An improved synthetic strategy was developed to generate inhibitors containing the latter that target isoleucyl- (IleRS) and seryl-tRNA synthetase (SerRS), two structurally distinct representatives of Class I and II aminoacyl-tRNA synthetases (aaRSs). These enzymes attach their respective amino acid to its cognate tRNA and are indispensable for protein translation. Evaluation of the ability of the two similar isosteres to inhibit serRS revealed a remarkable difference, with an almost complete loss of activity for seryl-sulfonamide 15 (SerSoHA) compared to its sulfamoyl analogue (SerSA), while inhibition of IleRS was unaffected. To explain these observations, we have determined a 2.1 Šcrystal structure of Klebsiella pneumoniae SerRS in complex with SerSA. Using this structure as a template, modelling of 15 in the active site predicts an unfavourable eclipsed conformation. We extended the same modelling strategy to representative members of the whole adenylate-forming enzyme superfamily, and were able to disclose a new classification system for adenylating enzymes, based on their protein fold. The results suggest that, other than for the structural and functional orthologues of the Class II aaRSs, the O to C substitution within the sulfur-sugar link should generally preserve the inhibitory potency.


Subject(s)
Adenosine/analogs & derivatives , Amino Acyl-tRNA Synthetases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Sulfonamides/chemistry , Adenosine/chemical synthesis , Amino Acyl-tRNA Synthetases/chemistry , Aminoacylation , Bacillus subtilis/enzymology , Catalytic Domain , Dickeya chrysanthemi/enzymology , Enzyme Inhibitors/chemical synthesis , Klebsiella pneumoniae/enzymology , Models, Molecular , Mycobacterium tuberculosis/enzymology , Sulfolobus/enzymology , Sulfonamides/chemical synthesis , Thermus thermophilus/enzymology
14.
Eur J Med Chem ; 173: 154-166, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30995568

ABSTRACT

Aminoacyl-tRNA synthetases (aaRSs) catalyse the ATP-dependent coupling of an amino acid to its cognate tRNA. Being vital for protein translation aaRSs are considered a promising target for the development of novel antimicrobial agents. 5'-O-(N-aminoacyl)-sulfamoyl adenosine (aaSA) is a non-hydrolysable analogue of the aaRS reaction intermediate that has been shown to be a potent inhibitor of this enzyme family but is prone to chemical instability and enzymatic modification. In an attempt to improve the molecular properties of this scaffold we synthesized a series of base substituted aaSA analogues comprising cytosine, uracil and N3-methyluracil targeting leucyl-, tyrosyl- and isoleucyl-tRNA synthetases. In in vitro assays seven out of the nine inhibitors demonstrated Kiapp values in the low nanomolar range. To complement the biochemical studies, X-ray crystallographic structures of Neisseria gonorrhoeae leucyl-tRNA synthetase and Escherichia coli tyrosyl-tRNA synthetase in complex with the newly synthesized compounds were determined. These highlighted a subtle interplay between the base moiety and the target enzyme in defining relative inhibitory activity. Encouraged by this data we investigated if the pyrimidine congeners could escape a natural resistance mechanism, involving acetylation of the amine of the aminoacyl group by the bacterial N-acetyltransferases RimL and YhhY. With RimL the pyrimidine congeners were less susceptible to inactivation compared to the equivalent aaSA, whereas with YhhY the converse was true. Combined the various insights resulting from this study will pave the way for the further rational design of aaRS inhibitors.


Subject(s)
Amino Acyl-tRNA Synthetases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Nucleosides/pharmacology , Pyrimidines/pharmacology , Amino Acyl-tRNA Synthetases/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/analysis , Enzyme Inhibitors/chemical synthesis , Escherichia coli/cytology , Escherichia coli/enzymology , Molecular Structure , Nucleosides/analysis , Nucleosides/chemical synthesis , Pyrimidines/analysis , Pyrimidines/chemical synthesis , Structure-Activity Relationship
15.
Eur J Med Chem ; 148: 384-396, 2018 Mar 25.
Article in English | MEDLINE | ID: mdl-29477072

ABSTRACT

Aminoacyl-tRNA synthetases (aaRSs) are enzymes that precisely attach an amino acid to its cognate tRNA. This process, which is essential for protein translation, is considered a viable target for the development of novel antimicrobial agents, provided species selective inhibitors can be identified. Aminoacyl-sulfamoyl adenosines (aaSAs) are potent orthologue specific aaRS inhibitors that demonstrate nanomolar affinities in vitro but have limited uptake. Following up on our previous work on substitution of the base moiety, we evaluated the effect of the N3-position of the adenine by synthesizing the corresponding 3-deazaadenosine analogues (aaS3DAs). A typical organism has 20 different aaRS, which can be split into two distinct structural classes. We therefore coupled six different amino acids, equally targeting the two enzyme classes, via the sulfamate bridge to 3-deazaadenosine. Upon evaluation of the inhibitory potency of the obtained analogues, a clear class bias was noticed, with loss of activity for the aaS3DA analogues targeting class II enzymes when compared to the equivalent aaSA. Evaluation of the available crystallographic structures point to the presence of a conserved water molecule which could have importance for base recognition within class II enzymes, a property that can be explored in future drug design efforts.


Subject(s)
Amino Acyl-tRNA Synthetases/antagonists & inhibitors , Anti-Infective Agents/chemistry , Tubercidin/chemistry , Amino Acids/chemistry , Drug Design , Escherichia coli Proteins , Sulfonic Acids/chemistry , Tubercidin/pharmacology
16.
Eur J Med Chem ; 143: 1535-1542, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29126726

ABSTRACT

ABCB1-mediated multidrug resistance (MDR) is a principal obstacle for successful cancer chemotherapy. A series of pyrimidine-based hybrid molecules containing 1,2,3-triazole moiety were evaluated for their reversal activities against MDR. The majority of target compounds displayed moderate to great reversal potency. Among these compounds, compound 25 displayed the most potent reversal activity, about 7-fold more potent than Verapamil (VRP). Further mechanism studies revealed that compound 25 could obviously reverse paclitaxel (PTX) resistance in SW620/AD300 cells by increasing accumulation and extending maintenance of PTX. Our findings indicate that the 1,2,3-triazole-pyrimidine-based derivatives may serve as an interesting lead for the development of new potent and efficacious ABCB1-dependent MDR modulators.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Pyrimidines/pharmacology , Triazoles/pharmacology , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Pyrimidines/chemistry , Structure-Activity Relationship , Triazoles/chemistry , Tumor Cells, Cultured
17.
Pharmacol Res ; 122: 66-77, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28571892

ABSTRACT

Histone lysine specific demethylase 1 (LSD1) plays an important role in epigenetic modifications, and aberrant expression of LSD1 predicts tumor progression and poor prognosis in human esophageal cancers. In this study, a series of LSD1 inhibitors were synthesized and proved to be highly potent against human esophageal squamous cell carcinoma (ESCC). Our data showed that these LSD1 inhibitors selectively suppressed the viability of esophageal cancer cell line (EC-109) bearing overexpressed LSD1. Among these, compound LPE-1 (LSD1 IC50=0.336±0.003µM) significantly suppressed proliferation, induced apoptosis, arrested cell cycle of EC109 cells at G2/M phase, and caused changes of the associated protein markers correspondingly. We also found that compound LPE-1 potently inhibited the migration and invasion of EC-109 cells. Docking studies showed that the cyano group formed hydrogen bonds with Val811 and Thr810. Additionally, the thiophene moiety formed arene-H interaction with Trp761 residue. In vivo studies showed that compound LPE-1 inhibited tumor growth of xenograft models bearing EC-109 without obvious toxicity. Collectively, our findings indicate that LSD1 may be a potential therapeutic target in ESCC, and compound LPE-1 could serve as a lead compound for further development for anti-ESCC drug discovery.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Esophageal Neoplasms/drug therapy , Histone Demethylases/antagonists & inhibitors , Pyrimidines/chemistry , Pyrimidines/pharmacology , Animals , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Esophagus/drug effects , Esophagus/metabolism , Esophagus/pathology , Female , Histone Demethylases/metabolism , Humans , Mice, Inbred BALB C , Molecular Docking Simulation , Pyrimidines/therapeutic use
18.
Bioorg Med Chem Lett ; 25(5): 1124-8, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25655718

ABSTRACT

A series of novel 1,2,3-triazole-pyrimidine-urea hybrids were designed, synthesized and evaluated for anticancer activity against four selected cancer cell lines (MGC-803, EC-109, MCF-7 and B16-F10). Majority of the synthesized compounds exhibited moderate to potent activity against all the cancer cell lines assayed. Particularly, compounds 26, 30 and 38 exhibited excellent growth inhibition against B16-F10 with IC50 values of 32nM, 35nM and 42nM, respectively. Flow cytometry analysis demonstrated that compound 26 induced the cellular apoptosis in a concentration-dependent manner.


Subject(s)
Antineoplastic Agents/chemistry , Drug Design , Pyrimidines/chemistry , Triazoles/chemistry , Urea/analogs & derivatives , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/pharmacology , Urea/chemical synthesis , Urea/pharmacology
19.
J Med Chem ; 58(4): 1705-16, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-25610955

ABSTRACT

Histone lysine specific demethylase 1 (LSD1) was reported to be overexpressed in several human cancers and recognized as a promising anticancer drug target. In the current study, we designed and synthesized a novel series of pyrimidine-thiourea hybrids and evaluated their potential LSD1 inhibitory effect. One of the compounds, 6b, containing a terminal alkyne appendage, was shown to be the most potent and selective LSD1 inhibitor in vitro and exhibited strong cytotoxicity against LSD1 overexpressed gastric cancer cells. Compound 6b also showed marked inhibition of cell migration and invasion as well as significant in vivo tumor suppressing and antimetastasis role, without significant side effects by oral administration. Our findings indicate that the pyrimidine-thiourea-based LSD1 inactivator may serve as a leading compound targeting LSD1 overexpressed cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Enzyme Inhibitors/pharmacology , Histone Demethylases/antagonists & inhibitors , Neoplasms, Experimental/drug therapy , Pyrimidines/pharmacology , Thiourea/pharmacology , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Histone Demethylases/metabolism , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Molecular Structure , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Pyrimidines/administration & dosage , Pyrimidines/chemistry , Structure-Activity Relationship , Thiourea/administration & dosage , Thiourea/chemistry
20.
Eur J Med Chem ; 86: 368-80, 2014 Oct 30.
Article in English | MEDLINE | ID: mdl-25180925

ABSTRACT

A series of novel 1,2,3-triazole-pyrimidine hybrids were designed, synthesized and evaluated for their anticancer activity against four selected cancer cell lines (MGC-803, EC-109, MCF-7 and B16-F10). Most of the synthesized compounds exhibited moderate to good activity against all the cancer cell lines selected. Compound 17 showed the most excellent anticancer activity with single-digit micromolar IC50 values ranging from 1.42 to 6.52 µM. Further mechanism studies revealed that compound 17 could obviously inhibit the proliferation of EC-109 cancer cells by inducing apoptosis and arresting the cell cycle at G2/M phase.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Pyrimidines/pharmacology , Triazoles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , MCF-7 Cells , Molecular Structure , Pyrimidines/chemistry , Structure-Activity Relationship , Triazoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...