Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 14(4)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37421124

ABSTRACT

Abrasive water jetting is an effective dressing method for a fixed abrasive pad (FAP) and can improve FAP machining efficiency and the impact of abrasive water jet (AWJ) pressure on the dressing effect; moreover, the machining state of FAP after dressing has not been thoroughly studied. Therefore, in this study, the FAP was dressed by using AWJ under four pressures, and the dressed FAP was subjected to lapping experiments and tribological experiments. Through an analysis of the material removal rate, FAP surface topography, friction coefficient, and friction characteristic signal, the influence of AWJ pressure on the friction characteristic signal in FAP processing was studied. The outcomes show that the impact of the dressing on FAP rises and then falls as the AWJ pressure increases. The best dressing effect was observed when the AWJ pressure was 4 MPa. In addition, the maximum value of the marginal spectrum initially rises and then falls as the AWJ pressure increases. When the AWJ pressure was 4 MPa, the peak value of the marginal spectrum of the FAP that was dressed during processing was the largest.

2.
Materials (Basel) ; 15(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35955184

ABSTRACT

Clarifying the influence of the dress process parameters of the abrasive water jet on the dressing effect of fixed-abrasive pads (FAPs) is a prerequisite for online controllable dressing of abrasive water jets. This paper uses three factors and three horizontal response surface methods to explore the influence of jet pressure, abrasive concentration, and nozzle angle on FAP dressing quality. The prediction model of the material removal rate of a FAP machined using three process parameters is established. The influence of pairwise interactions of the three process parameter variables on the dressing effect and the optimal process parameters under each target is analyzed. Finally, the optimal process parameters predicted by the model are verified by experiments. The results show that the best dressing parameters with the MRR of the workpiece as the response value are as follows: jet pressure 3.8 MPa, abrasive concentration 3%, and nozzle angle 73°. The predicted value of the optimal process performance is 464.574 nm/min, and the experimental verification result is 469.136 nm/min; the error between the experimental value and the predicted value is within a reasonable range.

3.
Micromachines (Basel) ; 13(7)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35888798

ABSTRACT

The surface condition of the fixed abrasive pad (FAP) has a significant impact on its machining performance, workpiece material removal rate (MRR), and surface roughness. To clarify the wavelet packet energy characteristics of friction signal under different surface conditions of FAP and its mapping relationship with MRR and workpiece surface quality, FAP samples in different processing stages were obtained through a consolidated abrasive grinding quartz glass experiment. Then, the friction signals in different stages were received by the friction and wear experiment between the FAP and quartz glass workpiece, and the wavelet packet analysis was carried out. The experimental results show that with the increase of lapping time, the surface wear degree of the FAP increased gradually, and the MRR of the workpiece, the surface roughness of the FAP, and the surface roughness of the workpiece decreased slowly. In the wavelet packet energy of friction signal during machining, the energy proportion of frequency band 7 showed an upward trend with the increase of lapping time. The energy proportion of frequency band 8 showed a downward trend with the increase of lapping time. The change characteristics of the two are significantly correlated with the surface condition of the FAP.

4.
Micromachines (Basel) ; 11(5)2020 May 13.
Article in English | MEDLINE | ID: mdl-32414034

ABSTRACT

Micro-end-milling is a cutting technology that removes redundant material from machined workpieces by small-diameter end mills, and is widely used to manufacture miniature complex parts. During micro-end-milling, the cutting vibration caused by weak tool rigidity and high spindle speed is known as a key factor for decreasing machined quality and accelerating tool failure. This study reports on experiments of micro-end-milling of the straight groove for AISI 1045 steel. The waveform characteristics of acceleration vibration were revealed, the relationship between acceleration and milling parameters were analyzed and two types of relationship models were developed. The results show that, during micro-end-milling of the straight groove, the components of acceleration vibration from largest to smallest are in turn the transverse acceleration αY, the feed acceleration αX and the axial acceleration αZ. Compared with feed velocity vf and axial depth of cut ap, the spindle speed n has the highest influence on cutting vibration. The response surface model of acceleration vibration was shown to have a higher prediction accuracy compared to the power function model and is more suitable for the prediction and control of cutting vibration during micro-end-milling.

SELECTION OF CITATIONS
SEARCH DETAIL
...