Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
2.
BMC Genomics ; 18(1): 78, 2017 01 13.
Article in English | MEDLINE | ID: mdl-28086803

ABSTRACT

BACKGROUND: 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is the most potent congener of the dioxin class of environmental contaminants. Exposure to TCDD causes a wide range of toxic outcomes, ranging from chloracne to acute lethality. The severity of toxicity is highly dependent on the aryl hydrocarbon receptor (AHR). Binding of TCDD to the AHR leads to changes in transcription of numerous genes. Studies evaluating the transcriptional changes brought on by TCDD may provide valuable insight into the role of the AHR in human health and disease. We therefore compiled a collection of transcriptomic datasets that can be used to aid the scientific community in better understanding the transcriptional effects of ligand-activated AHR. RESULTS: Specifically, we have created a datasets package - TCDD.Transcriptomics - for the R statistical environment, consisting of 63 unique experiments comprising 377 samples, including various combinations of 3 species (human derived cell lines, mouse and rat), 4 tissue types (liver, kidney, white adipose tissue and hypothalamus) and a wide range of TCDD exposure times and doses. These datasets have been fully standardized using consistent preprocessing and annotation packages (available as of September 14, 2015). To demonstrate the utility of this R package, a subset of "AHR-core" genes were evaluated across the included datasets. Ahrr, Nqo1 and members of the Cyp family were significantly induced following exposure to TCDD across the studies as expected while Aldh3a1 was induced specifically in rat liver. Inmt was altered only in liver tissue and primarily by rat-AHR. CONCLUSIONS: Analysis of the "AHR-core" genes demonstrates a continued need for studies surrounding the impact of AHR-activity on the transcriptome; genes believed to be consistently regulated by ligand-activated AHR show surprisingly little overlap across species and tissues. Until now, a comprehensive assessment of the transcriptome across these studies was challenging due to differences in array platforms, processing methods and annotation versions. We believe that this package, which is freely available for download ( http://labs.oicr.on.ca/boutros-lab/tcdd-transcriptomics ) will prove to be a highly beneficial resource to the scientific community evaluating the effects of TCDD exposure as well as the variety of functions of the AHR.


Subject(s)
Environmental Pollutants/pharmacology , Gene Expression Profiling , Gene Expression Regulation/drug effects , Polychlorinated Dibenzodioxins/pharmacology , Transcriptome , Animals , Cell Line , Computational Biology/methods , Female , Gene Expression Profiling/methods , Humans , Male , Mice , Rats , Software , Web Browser
4.
Pediatrics ; 137(2): e20143544, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26798044

ABSTRACT

We report a case of a child with a right ventricular inflammatory myofibroblastic tumor (IMT) who presented with fever, viral symptoms, and abdominal discomfort. Including this case, 49 intracardiac tumors have been previously reported in all age groups. The majority of intracardiac IMTs occur in pediatric patients, with approximately half presenting in children aged <12 months. Intracardiac IMTs are generally described as benign tumors; however, depending on their location, the initial presentation may involve heart failure or sudden death.(1) In addition to cardiac signs and symptoms, the clinical presentation of IMTs may also include constitutional signs such as fever, anemia, and elevated inflammatory markers. This case report reviews the diagnosis and management of IMTs, as well as the histopathologic features of this rare tumor type. Clinicians should be aware of their clinical presentation because early diagnosis and treatment can significantly reduce morbidity and mortality.


Subject(s)
Fever/etiology , Heart Neoplasms/diagnosis , Neoplasms, Muscle Tissue/diagnosis , Fatal Outcome , Female , Heart Neoplasms/complications , Heart Ventricles , Humans , Infant , Neoplasms, Muscle Tissue/complications
5.
Can Fam Physician ; 61(1): e43-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25756148

ABSTRACT

OBJECTIVE: To determine features of eyelid lesions most predictive of malignancy, and to design a key to assist general practitioners in the triaging of such lesions. DESIGN: Prospective observational study. SETTING: Department of Ophthalmology at Queen's University in Kingston, Ont. PARTICIPANTS: A total of 199 consecutive periocular lesions requiring biopsy or excision were included. MAIN OUTCOME MEASURES: First, potential features suggestive of malignancy for eyelid lesions were identified based on a survey sent to Canadian oculoplastic surgeons. The sensitivity, specificity, and odds ratios (ORs) of these features were then determined using 199 consecutive photographed eyelid lesions of patients who presented to the Department of Ophthalmology and underwent biopsy or excision. A triage key was then created based on the features with the highest ORs, and it was pilot-tested by a group of medical students. RESULTS: Of the 199 lesions included, 161 (80.9%) were benign and 38 (19.1%) were malignant. The 3 features with the highest ORs in predicting malignancy were infiltration (OR = 18.2, P < .01), ulceration (OR = 14.7, P < .01), and loss of eyelashes (OR = 6.0, P < .01). The acronym LUI (loss of eyelashes, ulceration, infiltration) was created to assist in memory recall. After watching a video describing the LUI triage key, the mean total score of a group of medical students for correctly identifying malignant lesions increased from 46% to 70% (P < .001). CONCLUSION: Differentiating benign from malignant eyelid lesions can be difficult even for experienced physicians. The LUI triage key provides physicians with an evidence-based, easy-to-remember system for assisting in the triaging of these lesions.


Subject(s)
Eyelid Neoplasms/pathology , Eyelids/pathology , Triage/methods , Biopsy , Evidence-Based Practice , Eyelashes/growth & development , Humans , Odds Ratio , Ophthalmology , Pilot Projects , Predictive Value of Tests , Prospective Studies , Sensitivity and Specificity , Students, Medical , Symptom Assessment/methods
6.
Lancet Oncol ; 14(4): 327-34, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23498719

ABSTRACT

BACKGROUND: Retinoblastoma is the childhood retinal cancer that defined tumour-suppressor genes. Previous work shows that mutation of both alleles of the RB1 retinoblastoma suppressor gene initiates disease. We aimed to characterise non-familial retinoblastoma tumours with no detectable RB1 mutations. METHODS: Of 1068 unilateral non-familial retinoblastoma tumours, we compared those with no evidence of RB1 mutations (RB1(+/+)) with tumours carrying a mutation in both alleles (RB1(-/-)). We analysed genomic copy number, RB1 gene expression and protein function, retinal gene expression, histological features, and clinical data. FINDINGS: No RB1 mutations (RB1(+/+)) were reported in 29 (2·7%) of 1068 unilateral retinoblastoma tumours. 15 of the 29 RB1(+/+) tumours had high-level MYCN oncogene amplification (28-121 copies; RB1(+/+)MYCN(A)), whereas none of 93 RB1(-/-) primary tumours tested showed MYCN amplification (p<0·0001). RB1(+/+)MYCN(A) tumours expressed functional RB1 protein, had fewer overall genomic copy-number changes in genes characteristic of retinoblastoma than did RB1(-/-) tumours, and showed distinct aggressive histological features. MYCN amplification was the sole copy-number change in one RB1(+/+)MYCN(A) retinoblastoma. One additional MYCN(A) tumour was discovered after the initial frequencies were determined, and this is included in further analyses. Median age at diagnosis of the 17 children with RB1(+/+)MYCN(A) tumours was 4·5 months (IQR 3·5-10), compared with 24 months (15-37) for 79 children with non-familial unilateral RB1(-/-) retinoblastoma. INTERPRETATION: Amplification of the MYCN oncogene might initiate retinoblastoma in the presence of non-mutated RB1 genes. These unilateral RB1(+/+)MYCN(A) retinoblastomas are characterised by distinct histological features, only a few of the genomic copy-number changes that are characteristic of retinoblastoma, and very early age of diagnosis. FUNDING: National Cancer Institute-National Institutes of Health, Canadian Institutes of Health Research, German Research Foundation, Canadian Retinoblastoma Society, Hyland Foundation, Toronto Netralaya and Doctors Lions Clubs, Ontario Ministry of Health and Long Term Care, UK-Essen, and Foundations Avanti-STR and KiKa.


Subject(s)
Gene Dosage , Nuclear Proteins , Oncogene Proteins , Retinoblastoma Protein , Retinoblastoma , Alleles , Cell Line, Tumor , Child , Child, Preschool , Female , Gene Amplification , Gene Expression Regulation, Neoplastic , Genome, Human , Humans , Infant , Mutation , N-Myc Proto-Oncogene Protein , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Polymorphism, Single Nucleotide , Retinoblastoma/genetics , Retinoblastoma/metabolism , Retinoblastoma/pathology , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism
7.
Toxicol Appl Pharmacol ; 260(2): 135-45, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22342509

ABSTRACT

The biochemical and toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) have been the subject of intense study for decades. It is now clear that essentially all TCDD-induced toxicities are mediated by DNA-protein interactions involving the Aryl Hydrocarbon Receptor (AHR). Nevertheless, it remains unknown which AHR target genes cause TCDD toxicities. Several groups, including our own, have developed rodent model systems to probe these questions. mRNA expression profiling of these model systems has revealed significant inter-species heterogeneity in rodent hepatic responses to TCDD. It has remained unclear if this variability also exists within a species, amongst rodent strains. To resolve this question, we profiled the hepatic transcriptomic response to TCDD of diverse rat strains (L-E, H/W, F344 and Wistar rats) and two lines derived from L-E×H/W crosses, at consistent age, sex, and dosing (100 µg/kg TCDD for 19 h). Using this uniquely consistent dataset, we show that the majority of TCDD-induced alterations in mRNA abundance are strain/line-specific: only 11 genes were affected by TCDD across all strains, including well-known dioxin-responsive genes such as Cyp1a1 and Nqo1. Our analysis identified two novel universally dioxin-responsive genes as well as 4 genes induced by TCDD in dioxin-sensitive rats only. These 6 genes are strong candidates to explain TCDD-related toxicities, so we validated them using 152 animals in time-course (0 to 384 h) and dose-response (0 to 3000 µg/kg) experiments. This study reveals that different rat strains exhibit dramatic transcriptional heterogeneity in their hepatic responses to TCDD and that inter-strain comparisons can help identify candidate toxicity-related genes.


Subject(s)
Liver/drug effects , Polychlorinated Dibenzodioxins/toxicity , Transcriptome/drug effects , Animals , Crosses, Genetic , Cytochrome P-450 CYP1A1/genetics , Dose-Response Relationship, Drug , Genetic Variation , Liver/enzymology , Liver/metabolism , Male , NAD(P)H Dehydrogenase (Quinone)/genetics , Oligonucleotide Array Sequence Analysis , RNA, Messenger/chemistry , RNA, Messenger/genetics , Rats , Rats, Inbred F344 , Rats, Long-Evans , Rats, Wistar , Receptors, Aryl Hydrocarbon/biosynthesis , Receptors, Aryl Hydrocarbon/genetics , Time Factors , Transcription, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...