Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Acta Pharmacol Sin ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719954

ABSTRACT

Hypertensive cerebrovascular remodeling involves the enlargement of vascular smooth muscle cells (VSMCs), which activates volume-regulated Cl- channels (VRCCs). The leucine-rich repeat-containing family 8 A (LRRC8A) has been shown to be the molecular identity of VRCCs. However, its role in vascular remodeling during hypertension is unclear. In this study, we used vascular smooth muscle-specific LRRC8A knockout (CKO) mice and an angiotensin II (Ang II)-induced hypertension model. The results showed that cerebrovascular remodeling during hypertension was ameliorated in CKO mice, and extracellular matrix (ECM) deposition was reduced. Based on the RNA-sequencing analysis of aortic tissues, the level of matrix metalloproteinases (MMPs), such as MMP-9 and MMP-14, were reduced in CKO mice with hypertension, which was further verified in vivo by qPCR and immunofluorescence analysis. Knockdown of LRRC8A in VSMCs inhibited the Ang II-induced upregulation of collagen I, fibronectin, and matrix metalloproteinases (MMPs), and overexpression of LRRC8A had the opposite effect. Further experiments revealed an interaction between with-no-lysine (K)-1 (WNK1), which is a "Cl--sensitive kinase", and Forkhead transcription factor O3a (FOXO3a), which is a transcription factor that regulates MMP expression. Ang II induced the phosphorylation of WNK1 and downstream FOXO3a, which then increased the expression of MMP-2 and MMP-9. This process was inhibited or potentiated when LRRC8A was knocked down or overexpressed, respectively. Overall, these results demonstrate that LRRC8A knockout in vascular smooth muscle protects against cerebrovascular remodeling during hypertension by reducing ECM deposition and inhibiting the WNK1/FOXO3a/MMP signaling pathway, demonstrating that LRRC8A is a potential therapeutic target for vascular remodeling-associated diseases such as stroke.

2.
Br J Pharmacol ; 181(5): 640-658, 2024 03.
Article in English | MEDLINE | ID: mdl-37702564

ABSTRACT

BACKGROUND AND PURPOSE: Atherosclerosis induced by cyclosporine A (CsA), an inhibitor of the calcineurin/nuclear factor of activated T cells (NFAT) pathway, is a major concern after organ transplantation. However, the atherosclerotic mechanisms of CsA remain obscure. We previously demonstrated that calcineurin/NFAT signalling inhibition contributes to atherogenesis via suppressing microRNA-204 (miR-204) transcription. We therefore hypothesised that miR-204 is involved in the development of CsA-induced atherosclerosis. EXPERIMENTAL APPROACH: ApoE-/- mice with macrophage-miR-204 overexpression were generated to determine the effects of miR-204 on CsA-induced atherosclerosis. Luciferase reporter assays and chromatin immunoprecipitation sequencing were performed to explore the targets mediating miR-204 effects. KEY RESULTS: CsA alone did not significantly affect atherosclerotic lesions or serum lipid levels. However, it exacerbated high-fat diet-induced atherosclerosis and hyperlipidemia in C57BL/6J and ApoE-/- mice, respectively. miR-204 levels decreased in circulating monocytes and plaque lesions during CsA-induced atherosclerosis. The upregulation of miR-204 in macrophages inhibited CsA-induced atherosclerotic plaque formation but did not affect serum lipid levels. miR-204 limited the CsA-induced foam cell formation by reducing the expression of the scavenger receptors SR-BII and CD36. SR-BII was post-transcriptionally regulated by mature miR-204-5p via 3'-UTR targeting. Additionally, nuclear-localised miR-204-3p prevented the CsA-induced binding of Ago2 to the CD36 promoter, suppressing CD36 transcription. SR-BII or CD36 expression restoration dampened the beneficial effects of miR-204 on CsA-induced atherosclerosis. CONCLUSION AND IMPLICATIONS: Macrophage miR-204 ameliorates CsA-induced atherosclerosis, suggesting that miR-204 may be a potential target for the prevention and treatment of CsA-related atherosclerotic side effects.


Subject(s)
Atherosclerosis , MicroRNAs , Plaque, Atherosclerotic , Animals , Mice , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Atherosclerosis/chemically induced , Atherosclerosis/genetics , Calcineurin/metabolism , CD36 Antigens/metabolism , Cyclosporine/adverse effects , Cyclosporine/metabolism , Lipids , Macrophages , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Plaque, Atherosclerotic/chemically induced , Plaque, Atherosclerotic/metabolism
3.
Circulation ; 148(7): 589-606, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37203562

ABSTRACT

BACKGROUND: Aortic dissection (AD) is a fatal cardiovascular disorder without effective medications due to unclear pathogenic mechanisms. Bestrophin3 (Best3), the predominant isoform of bestrophin family in vessels, has emerged as critical for vascular pathological processes. However, the contribution of Best3 to vascular diseases remains elusive. METHODS: Smooth muscle cell-specific and endothelial cell-specific Best3 knockout mice (Best3SMKO and Best3ECKO, respectively) were engineered to investigate the role of Best3 in vascular pathophysiology. Functional studies, single-cell RNA sequencing, proteomics analysis, and coimmunoprecipitation coupled with mass spectrometry were performed to evaluate the function of Best3 in vessels. RESULTS: Best3 expression in aortas of human AD samples and mouse AD models was decreased. Best3SMKO but not Best3ECKO mice spontaneously developed AD with age, and the incidence reached 48% at 72 weeks of age. Reanalysis of single-cell transcriptome data revealed that reduction of fibromyocytes, a fibroblast-like smooth muscle cell cluster, was a typical feature of human ascending AD and aneurysm. Consistently, Best3 deficiency in smooth muscle cells decreased the number of fibromyocytes. Mechanistically, Best3 interacted with both MEKK2 and MEKK3, and this interaction inhibited phosphorylation of MEKK2 at serine153 and MEKK3 at serine61. Best3 deficiency induced phosphorylation-dependent inhibition of ubiquitination and protein turnover of MEKK2/3, thereby activating the downstream mitogen-activated protein kinase signaling cascade. Furthermore, restoration of Best3 or inhibition of MEKK2/3 prevented AD progression in angiotensin II-infused Best3SMKO and ApoE-/- mice. CONCLUSIONS: These findings unveil a critical role of Best3 in regulating smooth muscle cell phenotypic switch and aortic structural integrity through controlling MEKK2/3 degradation. Best3-MEKK2/3 signaling represents a novel therapeutic target for AD.


Subject(s)
Aortic Dissection , Muscle, Smooth, Vascular , Animals , Humans , Mice , Aortic Dissection/genetics , MAP Kinase Signaling System , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Phosphorylation
4.
Front Pharmacol ; 13: 1040999, 2022.
Article in English | MEDLINE | ID: mdl-36457708

ABSTRACT

Obesity-induced metabolic syndrome is a rapidly growing conundrum, reaching epidemic proportions globally. Chronic inflammation in obese adipose tissue plays a key role in metabolic syndrome with a series of local and systemic effects such as inflammatory cell infiltration and inflammatory cytokine secretion. Adipose tissue macrophages (ATM), as one of the main regulators in this process, are particularly crucial for pharmacological studies on obesity-related metabolic syndrome. Ponatinib, a multi-targeted tyrosine kinase inhibitor originally used to treat leukemia, has recently been found to improve dyslipidemia and atherosclerosis, suggesting that it may have profound effect on metabolic syndrome, although the mechanisms underlying have not yet been revealed. Here we discovered that ponatinib significantly improved insulin sensitivity in leptin deficient obese mice. In addition to that, ponatinib treatment remarkably ameliorated high fat diet-induced hyperlipidemia and inhibited ectopic lipid deposition in the liver. Interestingly, although ponatinib did not reduce but increase the weight of white adipose tissue (WAT), it remarkably suppressed the inflammatory response in WAT and preserved its function. Mechanistically, we showed that ponatinib had no direct effect on hepatocyte or adipocyte but attenuated free fatty acid (FFA) induced macrophage transformation from pro-inflammatory to anti-inflammatory phenotype. Moreover, adipocytes co-cultured with FFA-treated macrophages exhibited insulin resistance, while pre-treat these macrophages with ponatinib can ameliorate this process. These results suggested that the beneficial effects of ponatinib on metabolic disorders are achieved by inhibiting the inflammatory phenotypic transformation of ATMs, thereby maintaining the physiological function of adipose tissue under excessive obesity. The data here not only revealed the novel therapeutic function of ponatinib, but also provided a theoretical basis for the application of multi-target tyrosine kinase inhibitors in metabolic diseases.

5.
Eur Heart J ; 42(47): 4847-4861, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34570211

ABSTRACT

AIMS: Our previous study demonstrated that Ca2+ influx through the Orai1 store-operated Ca2+ channel in macrophages contributes to foam cell formation and atherosclerosis via the calcineurin-ASK1 pathway, not the classical calcineurin-nuclear factor of activated T-cell (NFAT) pathway. Moreover, up-regulation of NFATc3 in macrophages inhibits foam cell formation, suggesting that macrophage NFATc3 is a negative regulator of atherogenesis. Hence, this study investigated the precise role of macrophage NFATc3 in atherogenesis. METHODS AND RESULTS: Macrophage-specific NFATc3 knockout mice were generated to determine the effect of NFATc3 on atherosclerosis in a mouse model of adeno-associated virus-mutant PCSK9-induced atherosclerosis. NFATc3 expression was decreased in macrophages within human and mouse atherosclerotic lesions. Moreover, NFATc3 levels in peripheral blood mononuclear cells from atherosclerotic patients were negatively associated with plaque instability. Furthermore, macrophage-specific ablation of NFATc3 in mice led to the atherosclerotic plaque formation, whereas macrophage-specific NFATc3 transgenic mice exhibited the opposite phenotype. NFATc3 deficiency in macrophages promoted foam cell formation by potentiating SR-A- and CD36-meditated lipid uptake. NFATc3 directly targeted and transcriptionally up-regulated miR-204 levels. Mature miR-204-5p suppressed SR-A expression via canonical regulation. Unexpectedly, miR-204-3p localized in the nucleus and inhibited CD36 transcription. Restoration of miR-204 abolished the proatherogenic phenotype observed in the macrophage-specific NFATc3 knockout mice, and blockade of miR-204 function reversed the beneficial effects of NFATc3 in macrophages. CONCLUSION: Macrophage NFATc3 up-regulates miR-204 to reduce SR-A and CD36 levels, thereby preventing foam cell formation and atherosclerosis, indicating that the NFATc3/miR-204 axis may be a potential therapeutic target against atherosclerosis.


Subject(s)
Atherosclerosis , MicroRNAs , Animals , Atherosclerosis/genetics , Foam Cells , Humans , Leukocytes, Mononuclear , Mice , MicroRNAs/genetics , NFATC Transcription Factors/genetics , Proprotein Convertase 9
6.
Front Cell Dev Biol ; 9: 682574, 2021.
Article in English | MEDLINE | ID: mdl-34409030

ABSTRACT

The inflammatory response of endothelial cells accelerates various vascular diseases. MicroRNAs (miRNAs) participate in diverse cellular processes during inflammation. In the present study, we found that miR-302a is an effective suppressor of vascular inflammation in endothelial cells. It was revealed that miR-302a exhibited a lower level in a lipopolysaccharide (LPS)-induced mouse model and in patients with vascular inflammatory disease. Genetic haploinsufficiency of miR-302 aggravated the LPS-induced vascular inflammatory response in mice, and overexpression of miR-302a attenuated vascular inflammation in mice. Furthermore, overexpression of miR-302a inhibited the synthesis and secretion of adhesion factors in endothelial cells, and suppressed the adhesion of monocytes to endothelium. In the study of molecular mechanism, we found that miR-302a relieved vascular inflammation mainly by regulating the nuclear factor kappa-B (NF-κB) pathway in endothelial cells. The results showed that interleukin-1 receptor-associated kinase4 (IRAK4) and zinc finger protein 91 (ZFP91) were the binding targets of miR-302a. MiR-302a prevented the nuclear translocation of NF-κB by inhibiting phosphorylation of IκB kinase complex ß (IKKß) and inhibitors of κBα (IκBα) via targeting IRAK4. In addition, miR-302a downregulated the expression of NF-κB by directly binding with ZFP91. These findings indicate that miR-302a negatively regulates inflammatory responses in the endothelium via the NF-κB pathway and it may be a novel target for relieving vascular inflammation.

7.
Adv Sci (Weinh) ; 7(10): 1903657, 2020 May.
Article in English | MEDLINE | ID: mdl-32440483

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is the most prevalent form of chronic liver disease, and the mechanisms underpinning its pathogenesis have not been completely established. Transmembrane member 16A (TMEM16A), a component of the Ca2+-activated chloride channel (CaCC), has recently been implicated in metabolic events. Herein, TMEM16A is shown to be responsible for CaCC activation in hepatocytes and is increased in liver tissues of mice and patients with NAFLD. Hepatocyte-specific ablation of TMEM16A in mice ameliorates high-fat diet-induced obesity, hepatic glucose metabolic disorder, steatosis, insulin resistance, and inflammation. In contrast, hepatocyte-specific TMEM16A transgenic mice exhibit the opposite phenotype. Mechanistically, hepatocyte TMEM16A interacts with vesicle-associated membrane protein 3 (VAMP3) to induce its degradation, suppressing the formation of the VAMP3/syntaxin 4 and VAMP3/synaptosome-associated protein 23 complexes. This leads to the impairment of hepatic glucose transporter 2 (GLUT2) translocation and glucose uptake. Notably, VAMP3 overexpression restrains the functions of hepatocyte TMEM16A in blocking GLUT2 translocation and promoting lipid deposition, insulin resistance, and inflammation. In contrast, VAMP3 knockdown reverses the beneficial effects of TMEM16A downregulation. This study demonstrates a role for TMEM16A in NAFLD and suggests that inhibition of hepatic TMEM16A or disruption of TMEM16A/VAMP3 interaction may provide a new potential therapeutic strategy for NAFLD.

8.
iScience ; 19: 623-633, 2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31446225

ABSTRACT

It is well known that nuclear factor-kappaB (NF-κB) regulates neuronal structures and functions by nuclear transcription. Here, we showed that phospho-p65 (p-p65), an active form of NF-κB subunit, reversibly interacted with Nav1.7 channels in the membrane of dorsal root ganglion (DRG) neurons of rats. The interaction increased Nav1.7 currents by slowing inactivation of Nav1.7 channels and facilitating their recovery from inactivation, which may increase the resting state of the channels ready for activation. In cultured DRG neurons TNF-α upregulated the membrane p-p65 and enhanced Nav1.7 currents within 5 min but did not affect nuclear NF-κB within 40 min. This non-transcriptional effect on Nav1.7 may underlie a rapid regulation of the sensibility of the somatosensory system. Both NF-κB and Nav1.7 channels are critically implicated in many physiological functions and diseases. Our finding may shed new light on the investigation into the underlying mechanisms.

9.
Mol Pain ; 14: 1744806918797243, 2018.
Article in English | MEDLINE | ID: mdl-30180777

ABSTRACT

Bulleyaconitine A, a diterpenoid alkaloid isolated from Aconitum bulleyanum plants, has been used for the treatment of chronic pain in China since 1985. Clinical studies show that the oral administration of bulleyaconitine A is effective for treating different kinds of chronic pain, including back pain, joint pain, and neuropathic pain with minimal side effect in human patients. The experimental studies have revealed that bulleyaconitine A at therapeutic doses potently inhibits the peripheral sensitization and central sensitization that underlie chronic pain and has no effect on acute pain. Bulleyaconitine A preferably blocks tetrodotoxin-sensitive voltage-gated sodium channels in dorsal root ganglion neurons by inhibition of protein kinase C, and the effect is around 600 times more potent in neuropathic animals than in naïve ones. Bulleyaconitine A at 5 nM inhibits the hypersensitivity of dorsal root ganglion neurons in neuropathic rats but has no effect on excitability of dorsal root ganglion neurons in sham group. Bulleyaconitine A inhibits long-term potentiation at C-fiber synapses in spinal dorsal horn, a synaptic model of pathological pain, preferably in neuropathic pain rats over naïve rats. The following mechanisms may underlie the selective effect of bulleyaconitine A on chronic pain. (1) In neuropathic conditions, protein kinase C and voltage-gated sodium channels in dorsal root ganglion neurons are upregulated, which enhances bulleyaconitine A's effect. (2) Bulleyaconitine A use-dependently blocks voltage-gated sodium channels and therefore inhibits the ectopic discharges that are important for neuropathic pain. (3) Bulleyaconitine A is shown to inhibit neuropathic pain by the modulation of spinal microglia, which are involved in the chronic pain but not in acute (nociceptive) pain. Moreover, bulleyaconitine A facilitates the anesthetic effect of morphine and inhibits morphine tolerance in rats. Together, bulleyaconitine A is able to inhibit chronic pain by targeting at multiple molecules. Further clinical and experimental studies are needed for evaluating the efficacy of bulleyaconitine A in different forms of chronic pain in patients and for exploring the underlying mechanisms.


Subject(s)
Aconitine/analogs & derivatives , Adjuvants, Immunologic/therapeutic use , Chronic Pain/drug therapy , Aconitine/chemistry , Aconitine/therapeutic use , Animals , Ganglia, Spinal/drug effects , Ganglia, Spinal/physiology , Humans , Neurons/drug effects , Voltage-Gated Sodium Channels/chemistry , Voltage-Gated Sodium Channels/metabolism
10.
Mol Pain ; 14: 1744806918778491, 2018.
Article in English | MEDLINE | ID: mdl-29783906

ABSTRACT

Background Oral administration of Bulleyaconitine A, an extracted diterpenoid alkaloid from Aconitum bulleyanum plants, is effective for treating chronic pain in rats and in human patients, but the underlying mechanisms are poorly understood. Results As the hyperexcitability of dorsal root ganglion neurons resulting from the upregulation of voltage-gated sodium (Nav) channels has been proved critical for development of chronic pain, we tested the effects of Bulleyaconitine A on Nav channels in rat spared nerve injury model of neuropathic pain. We found that Bulleyaconitine A at 5 nM increased the threshold of action potentials and reduced the firing rate of dorsal root ganglion neurons in spared nerve injury rats but not in sham rats. Bulleyaconitine A preferably blocked tetrodotoxin-sensitive Nav channels over tetrodotoxin-resistant ones in dorsal root ganglion neurons of spared nerve injury rats. Bulleyaconitine A was more potent for blocking Nav1.3 and Nav1.7 than Nav1.8 in cell lines. The half maximal inhibitory concentration (IC50) values for resting Nav1.3, Nav1.7, and Nav1.8 were 995.6 ± 139.1 nM, 125.7 ± 18.6 nM, and 151.2 ± 15.4 µM, respectively, which were much higher than those for inactivated Nav1.3 (20.3 ± 3.4 pM), Nav1.7 (132.9 ± 25.5 pM), and Nav1.8 (18.0 ± 2.5 µM). The most profound use-dependent blocking effect of Bulleyaconitine A was observed on Nav1.7, less on Nav1.3, and least on Nav1.8 at IC50 concentrations. Bulleyaconitine A facilitated the inactivation of Nav channels in each subtype. Conclusions Preferably blocking tetrodotoxin-sensitive Nav1.7 and Nav1.3 in dorsal root ganglion neurons may contribute to Bulleyaconitine A's antineuropathic pain effect.


Subject(s)
Aconitine/analogs & derivatives , Ganglia, Spinal/pathology , NAV1.3 Voltage-Gated Sodium Channel/metabolism , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Nerve Tissue/injuries , Neurons/metabolism , Aconitine/pharmacology , Animals , Cell Line , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Humans , Ion Channel Gating/drug effects , Male , Nerve Tissue/drug effects , Nerve Tissue/metabolism , Nerve Tissue/pathology , Neurons/drug effects , Neurons/pathology , Rats, Sprague-Dawley
11.
Brain Behav Immun ; 71: 52-65, 2018 07.
Article in English | MEDLINE | ID: mdl-29709527

ABSTRACT

N-type voltage-gated calcium (Cav2.2) channels are expressed in the central terminals of dorsal root ganglion (DRG) neurons, and are critical for neurotransmitter release. Cav2.2 channels are also expressed in the soma of DRG neurons, where their function remains largely unknown. Here, we showed that Cav2.2 was upregulated in the soma of uninjured L4 DRG neurons, but downregulated in those of injured L5 DRG neurons following L5 spinal nerve ligation (L5-SNL). Local application of specific Cav2.2 blockers (ω-conotoxin GVIA, 1-100 µM or ZC88, 10-1000 µM) onto L4 and 6 DRGs on the operated side, but not the contralateral side, dose-dependently reversed mechanical allodynia induced by L5-SNL. Patch clamp recordings revealed that both ω-conotoxin GVIA (1 µM) and ZC88 (10 µM) depressed hyperexcitability in L4 but not in L5 DRG neurons of L5-SNL rats. Consistent with this, knockdown of Cav2.2 in L4 DRG neurons with AAV-Cav2.2 shRNA substantially prevented L5-SNL-induced mechanical allodynia and hyperexcitability of L4 DRG neurons. Furthermore, in L5-SNL rats, interleukin-1 beta (IL-1ß) and IL-10 were upregulated in L4 DRGs and L5 DRGs, respectively. Intrathecal injection of IL-1ß induced mechanical allodynia and Cav2.2 upregulation in bilateral L4-6 DRGs of naïve rats, whereas injection of IL-10 substantially prevented mechanical allodynia and Cav2.2 upregulation in L4 DRGs in L5-SNL rats. Finally, in cultured DRG neurons, Cav2.2 was dose-dependently upregulated by IL-1ß and downregulated by IL-10. These data indicate that the upregulation of Cav2.2 in uninjured DRG neurons via IL-1ß over-production contributes to neuropathic pain by increasing neuronal excitability following peripheral nerve injury.


Subject(s)
Calcium Channels, N-Type/physiology , Ganglia, Spinal/physiopathology , Animals , Calcium Channels, N-Type/metabolism , Hyperalgesia/physiopathology , Male , Neuralgia/metabolism , Neuralgia/physiopathology , Neurons/metabolism , Neurons/physiology , Neurons, Afferent/physiology , Peripheral Nerve Injuries/metabolism , Peripheral Nerve Injuries/physiopathology , Rats , Rats, Sprague-Dawley , Spinal Nerves/physiopathology , Synaptic Transmission/physiology , Transcriptional Activation , Up-Regulation
12.
Front Physiol ; 9: 1729, 2018.
Article in English | MEDLINE | ID: mdl-30618780

ABSTRACT

The integrated pest management (IPM) strategy was developed and used in combination with pesticides and beneficial biological control agents. To further develop IPM efficiency, it is important to evaluate the side effects of pesticides on biological control agents. Aphidius gifuensis is one of the most important aphid natural enemies and has been successfully used to control Myzys persicae and other aphid species. Imidacloprid (IMD) is a popular pesticide used worldwide and is highly toxic to non-target arthropods. Here, we investigated the short-term sublethal toxicity of IMD in Aphidius gifuensis and its impact on the biological performance and gene expression of this parasitoid. We found that sublethal IMD doses had a significant negative effect on the life history traits of female A. gifuensis, including shortening the lifespan and lowering parasitic capacity. Moreover, exposure to sublethal IMD also adversely affected the response of A. gifuensis to aphid-infested plant volatiles. Based on the transcriptome analysis, we found that the exposure to sublethal IMD doses significantly affected expression of genes involved in the central nervous system, energy metabolism, olfactory, and detoxification system of A. gifuensis. RT-qPCR also revealed that short term expose to sublethal IMD doses significantly induced the gene expression of genes related to the central nervous system (nAChRa7, nAChRa9, TbH, OAR1, NFR, TYR, and DAR1), olfactory system (OR28 and IR8a1), and detoxification system (CYP49p3, CYP6a2, and POD), while it suppressed the expression of genes involved in the central nervous system (nAChRa4 and nAChRb1), olfactory system (Orco1, IR8a2, and GR1), and detoxification system (GST2). Furthermore, exposure to sublethal doses of IMD also significantly increased the activities of CarEs and POD, whereas we observed no influence on the activities of CAT, GST, and SOD. Our results indicate that sublethal IMD doses might adversely affect the biological performance of A. gifuensis by altering gene expression related to the function of olfactory, nervous, energy metabolism, and detoxification systems. Thus, how the use of pesticides directly affect insect population should be considered when used in conjunction with natural pest parasitoids in IPM strategies.

13.
Pain ; 158(11): 2169-2180, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28915149

ABSTRACT

Oral Bulleyaconitine A (BLA) is effective for treating neuropathic pain in human patients, but the underlying mechanism is poorly understood. Here, we tested whether BLA blocked voltage-gated sodium channels (VGSCs) in dorsal root ganglion (DRG) neurons. Compelling evidence shows that voltage-gated sodium channels are upregulated in uninjured DRG neurons but downregulated in injured ones following peripheral nerve injury. We found that BLA preferably inhibited Na currents in uninjured DRG neurons in neuropathic rats. Compared to sham rats, IC50 values for resting and inactivated Na currents were 113 and 74 times lower in injured and uninjured neurons of L4-6 DRGs in spared nerve injury (SNI) rats (4.55 and 0.56 nM) and were 688 and 518 times lower in the uninjured L4 and L6 DRG neurons of L5 spinal nerve ligation (L5-SNL) rats. The use-dependent blockage of BLA on Na currents was more potent in neuropathic rats compared to sham rats. Bulleyaconitine A facilitated the inactivation of Na channels in each group. IC50 values for resting and inactivated tetrodotoxin-sensitive (TTX-S) channels were 1855 and 1843 times lower than those for TTX-resistant channels in the uninjured neurons of L5 spinal nerve ligation rats. The upregulation of protein kinase C was associated with the preferable effect of BLA on TTX-S Na channels in the uninjured DRG neurons. Local application of BLA onto L4-6 DRGs at 0.1 to 10 nM dose-dependently alleviated the mechanical allodynia and thermal hyperalgesia in L5 spinal nerve ligation model. Thus, preferable blockage of TTX-S Na channels in uninjured DRG neurons may contribute to BLA's antineuropathic pain effect.


Subject(s)
Aconitine/analogs & derivatives , Ganglia, Spinal/pathology , Neuralgia/drug therapy , Neuralgia/pathology , Protein Kinase C/metabolism , Sensory Receptor Cells/drug effects , Voltage-Gated Sodium Channels/metabolism , Aconitine/therapeutic use , Animals , Cadmium Chloride/pharmacology , Disease Models, Animal , Electric Stimulation , Enzyme Inhibitors/pharmacology , Gene Expression Regulation/drug effects , Hyperalgesia/drug therapy , Hyperalgesia/physiopathology , Male , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Sodium Channel Blockers/pharmacology , Tetrodotoxin/pharmacology , Time Factors
14.
J Neurosci ; 37(4): 871-881, 2017 01 25.
Article in English | MEDLINE | ID: mdl-28123022

ABSTRACT

Clinical studies show that chronic pain is accompanied by memory deficits and reduction in hippocampal volume. Experimental studies show that spared nerve injury (SNI) of the sciatic nerve induces long-term potentiation (LTP) at C-fiber synapses in spinal dorsal horn, but impairs LTP in the hippocampus. The opposite changes may contribute to neuropathic pain and memory deficits, respectively. However, the cellular and molecular mechanisms underlying the functional synaptic changes are unclear. Here, we show that the dendrite lengths and spine densities are reduced significantly in hippocampal CA1 pyramidal neurons, but increased in spinal neurokinin-1-positive neurons in mice after SNI, indicating that the excitatory synaptic connectivity is reduced in hippocampus but enhanced in spinal dorsal horn in this neuropathic pain model. Mechanistically, tumor necrosis factor-alpha (TNF-α) is upregulated in bilateral hippocampus and in ipsilateral spinal dorsal horn, whereas brain-derived neurotrophic factor (BDNF) is decreased in the hippocampus but increased in the ipsilateral spinal dorsal horn after SNI. Importantly, the SNI-induced opposite changes in synaptic connectivity and BDNF expression are prevented by genetic deletion of TNF receptor 1 in vivo and are mimicked by TNF-α in cultured slices. Furthermore, SNI activated microglia in both spinal dorsal horn and hippocampus; pharmacological inhibition or genetic ablation of microglia prevented the region-dependent synaptic changes, neuropathic pain, and memory deficits induced by SNI. The data suggest that neuropathic pain involves different structural synaptic alterations in spinal and hippocampal neurons that are mediated by overproduction of TNF-α and microglial activation and may underlie chronic pain and memory deficits. SIGNIFICANCE STATEMENT: Chronic pain is often accompanied by memory deficits. Previous studies have shown that peripheral nerve injury produces both neuropathic pain and memory deficits and induces long-term potentiation (LTP) at C-fiber synapses in spinal dorsal horn (SDH) but inhibits LTP in hippocampus. The opposite changes in synaptic plasticity may contribute to chronic pain and memory deficits, respectively. However, the structural and molecular bases of these alterations of synaptic plasticity are unclear. Here, we show that the complexity of excitatory synaptic connectivity and brain-derived neurotrophic factor (BDNF) expression are enhanced in SDH but reduced in the hippocampus in neuropathic pain and the opposite changes depend on tumor necrosis factor-alpha/tumor necrosis factor receptor 1 signaling and microglial activation. The region-dependent synaptic alterations may underlie chronic neuropathic pain and memory deficits induced by peripheral nerve injury.


Subject(s)
Hippocampus/metabolism , Microglia/metabolism , Neuronal Plasticity/physiology , Peripheral Nerve Injuries/metabolism , Spinal Cord/metabolism , Tumor Necrosis Factor-alpha/biosynthesis , Animals , Brain-Derived Neurotrophic Factor/biosynthesis , Hippocampus/drug effects , Hippocampus/pathology , Male , Memory Disorders/metabolism , Memory Disorders/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microglia/drug effects , Microglia/pathology , Neuralgia/metabolism , Neuralgia/pathology , Neuronal Plasticity/drug effects , Organ Culture Techniques , Pain Measurement/drug effects , Pain Measurement/methods , Peripheral Nerve Injuries/pathology , Rats , Rats, Sprague-Dawley , Spinal Cord/drug effects , Spinal Cord/pathology , Tumor Necrosis Factor-alpha/pharmacology
16.
J Cell Mol Med ; 21(5): 904-915, 2017 05.
Article in English | MEDLINE | ID: mdl-27878958

ABSTRACT

Increasing evidence supports that activation of store-operated Ca2+ entry (SOCE) is implicated in the chemoresistance of cancer cells subjected to chemotherapy. However, the molecular mechanisms underlying chemoresistance are not well understood. In this study, we aim to investigate whether 5-FU induces hepatocarcinoma cell death through regulating Ca2+ -dependent autophagy. [Ca2+ ]i was measured using fura2/AM dye. Protein expression was determined by Western blotting and immunohistochemistry. We found that 5-fluorouracil (5-FU) induced autophagic cell death in HepG2 hepatocarcinoma cells by inhibiting PI3K/AKT/mTOR pathway. Orai1 expression was obviously elevated in hepatocarcinoma tissues. 5-FU treatment decreased SOCE and Orai1 expressions, but had no effects on Stim1 and TRPC1 expressions. Knockdown of Orai1 or pharmacological inhibition of SOCE enhanced 5-FU-induced inhibition of PI3K/AKT/mTOR pathway and potentiated 5-FU-activated autophagic cell death. On the contrary, ectopic overexpression of Orai1 antagonizes 5-FU-induced autophagy and cell death. Our findings provide convincing evidence to show that Orai1 expression is increased in hepatocarcinoma tissues. 5-FU can induce autophagic cell death in HepG2 hepatocarcinoma cells through inhibition of SOCE via decreasing Orai1 expression. These findings suggest that Orai1 expression is a predictor of 5-FU sensitivity for hepatocarcinoma treatment and blockade of Orai1-mediated Ca2+ entry may be a promising strategy to sensitize hepatocarcinoma cells to 5-FU treatment.


Subject(s)
Calcium/metabolism , Carcinoma, Hepatocellular/metabolism , Fluorouracil/pharmacology , Liver Neoplasms/metabolism , ORAI1 Protein/metabolism , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagy/drug effects , Carcinoma, Hepatocellular/pathology , Down-Regulation/drug effects , Hep G2 Cells , Humans , Liver Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
17.
Neuropharmacology ; 110(Pt A): 181-189, 2016 11.
Article in English | MEDLINE | ID: mdl-27460962

ABSTRACT

ClC-3 chloride channel/antiporter has been demonstrated to play an important role in synaptic transmission in central nervous system. However, its expression and function in sensory neurons is poorly understood. In present work, we found that ClC-3 is expressed at high levels in dorsal root ganglia (DRG). Co-immunofluorescent data showed that ClC-3 is mainly distributed in A- and C-type nociceptive neurons. ClC-3 expression in DRG is decreased in the spared nerve injury (SNI) model of neuropathic pain. Knockdown of local ClC-3 in DRG neurons with siRNA increased mechanical sensitivity in naïve rats, while overexpression of ClC-3 reversed the hypersensitivity to mechanical stimuli after peripheral nerve injury. In addition, genetic deletion of ClC-3 enhances mouse mechanical sensitivity but did not affect thermal and cold threshold. Restoration of ClC-3 expression in ClC-3 deficient mice reversed the mechanical sensitivity. Mechanistically, loss of ClC-3 enhanced mechanical sensitivity through increasing the excitability of DRG neurons. These data indicate that ClC-3 is an endogenous inhibitor of neuropathic pain development. Downregulation of ClC-3 by peripheral nerve injury is critical for mechanical hypersensitivity. Our findings suggest that ClC-3 is a novel therapeutic target for treating neuropathic pain.


Subject(s)
Chloride Channels/metabolism , Down-Regulation/physiology , Ganglia, Spinal/metabolism , Hyperalgesia/metabolism , Peripheral Nerve Injuries/metabolism , Animals , Ganglia, Spinal/pathology , Hyperalgesia/pathology , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Pain Measurement/methods , Peripheral Nerve Injuries/pathology , Rats , Rats, Sprague-Dawley
18.
Circ J ; 80(4): 1024-33, 2016.
Article in English | MEDLINE | ID: mdl-26911455

ABSTRACT

BACKGROUND: Previous work has demonstrated that the volume-regulated chloride channel is activated during foam cell formation, and inhibition of chloride movement prevents intracellular lipid accumulation. However, the mechanism explaining how chloride movement promotes foam cell formation is not clear. METHODS AND RESULTS: Foam cell formation was determined by Oil Red O staining. Western blotting and co-immunoprecipitation were used to examine protein expression and protein-protein interaction. [Cl(-)]iwas measured using 6-methoxy-N-ethylquinolinium iodide dye. The results showed that [Cl(-)]iwas decreased in monocytes/macrophages from patients with hypercholesterolemia and from apoE(-/-)mice fed with a high-fat diet. Lowering [Cl(-)]iupregulated scavenger receptor A (SR-A) expression, increased the binding and uptake of oxLDL, enhanced pro-inflammatory cytokine production and subsequently accelerated foam cell formation in macrophages from humans and mice. In addition, low Cl(-)solution stimulated the activation of JNK and p38 mitogen-activated protein kinases. Inhibition of JNK and p38 blocked Cl(-)reduced medium-induced SR-A expression and lipid accumulation. In contrast, reduction of [Cl(-)]ipromoted the interaction of SR-A with caveolin-1, thus facilitating caveolin-1-dependent SR-A endocytosis. Moreover, disruption of caveolae attenuated SR-A internalization, JNK and p38 activation, and ultimately prevented SR-A expression and foam cell formation stimulated by low Cl(-)medium. CONCLUSIONS: This data provide strong evidence that reduction of [Cl(-)]iis a critical contributor to intracellular lipid accumulation, suggesting that modulation of [Cl(-)]iis a novel avenue to prevent foam cell formation and atherosclerosis.


Subject(s)
Chlorides/metabolism , Foam Cells/metabolism , Hypercholesterolemia/metabolism , Animals , Apolipoproteins E/deficiency , Caveolin 1/genetics , Caveolin 1/metabolism , Dietary Fats/adverse effects , Dietary Fats/pharmacology , Enzyme Activation/drug effects , Enzyme Activation/genetics , Foam Cells/pathology , Hypercholesterolemia/chemically induced , Hypercholesterolemia/genetics , Hypercholesterolemia/pathology , MAP Kinase Kinase 4/genetics , MAP Kinase Kinase 4/metabolism , Mice , Mice, Knockout , Scavenger Receptors, Class A/genetics , Scavenger Receptors, Class A/metabolism , Up-Regulation/drug effects , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
19.
Adv Exp Med Biol ; 904: 59-75, 2016.
Article in English | MEDLINE | ID: mdl-26900063

ABSTRACT

Peripheral nerve injury often induces chronic neuropathic pain. Peripheral nerve is consisted of sensory fibers and motor fibers, it is questioned injury to which type of fibers is responsible for generation of neuropathic pain? Because neuropathic pain is sensory disorder, it is generally believed that the disease should be induced by injury to sensory fibers. In recent years, however, emergent evidence shows that motor fiber injury but not sensory fiber injury is necessary and sufficient for induction of neuropathic pain. Motor fiber injury leads to neuropathic pain by upregulating pro-inflammatory cytokines and brain-derived neurotrophic factor in pain pathway.


Subject(s)
Motor Neurons/physiology , Neuralgia/physiopathology , Peripheral Nerve Injuries/complications , Sensory Receptor Cells/physiology , Action Potentials , Animals , Brain-Derived Neurotrophic Factor/biosynthesis , Brain-Derived Neurotrophic Factor/physiology , Central Nervous System Sensitization/physiology , Cytokines/biosynthesis , Cytokines/physiology , Hippocampus/physiopathology , Humans , Hyperalgesia/etiology , Hyperalgesia/physiopathology , Long-Term Potentiation , Microglia/physiology , Nerve Fibers, Unmyelinated/physiology , Neuralgia/etiology , Nociception/physiology , Peripheral Nerve Injuries/physiopathology , Sodium Channels/physiology , Spinal Cord/physiopathology , Up-Regulation
20.
Exp Neurol ; 273: 263-72, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26376216

ABSTRACT

Paclitaxel, a widely used chemotherapeutic agent, often induces painful peripheral neuropathy and at present no effective drug is available for treatment of the serious side effect. Here, we tested if intragastrical application of bulleyaconitine A (BLA), which has been approved for clinical treatment of chronic pain in China since 1985, could relieve the paclitaxel-induced neuropathic pain. A single dose of BLA attenuated the mechanical allodynia, thermal hyperalgesia induced by paclitaxel dose-dependently. Repetitive administration of the drug (0.4 and 0.8 mg/kg, t.i.d. for 7 d) during or after paclitaxel treatment produced a long-lasting inhibitory effect on thermal hyperalgesia, but not on mechanical allodynia. In consistency with the behavioral results, in vivo electrophysiological experiments revealed that spinal synaptic transmission mediated by C-fiber but not A fiber was potentiated, and the magnitude of long-term potentiation (LTP) at C-fiber synapses induced by the same high frequency stimulation was ~50% higher in paclitaxel-treated rats, compared to the naïve rats. Spinal or intravenous application of BLA depressed the spinal LTP, dose-dependently. Furthermore, patch clamp recordings in spinal cord slices revealed that the frequency but not amplitude of both spontaneous excitatory postsynaptic current (sEPSCs) and miniature excitatory postsynaptic currents (mEPSCs) in lamina II neurons was increased in paclitaxel-treated rats, and the superfusion of BLA reduced the frequency of sEPSCs and mEPSCs in paclitaxel-treated rats but not in naïve ones. Taken together, we provide novel evidence that BLA attenuates paclitaxel-induced neuropathic pain and that depression of spinal LTP at C-fiber synapses via inhibiting presynaptic transmitter release may contribute to the effect.


Subject(s)
Aconitine/analogs & derivatives , Antineoplastic Agents, Phytogenic/pharmacology , Nerve Fibers, Unmyelinated/drug effects , Neuralgia , Paclitaxel/pharmacology , Spinal Cord Dorsal Horn/drug effects , Aconitine/pharmacology , Aconitine/therapeutic use , Analysis of Variance , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Electric Stimulation , Evoked Potentials/drug effects , Hyperalgesia/drug therapy , Hyperalgesia/etiology , In Vitro Techniques , Male , Nerve Fibers, Unmyelinated/physiology , Neuralgia/chemically induced , Neuralgia/drug therapy , Neuralgia/pathology , Pain Measurement , Pain Threshold/drug effects , Rats , Rats, Sprague-Dawley , Synaptic Potentials/drug effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...