Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 299(9): 105127, 2023 09.
Article in English | MEDLINE | ID: mdl-37544647

ABSTRACT

Diabetic keratopathy, commonly associated with a hyperactive inflammatory response, is one of the most common eye complications of diabetes. The peptide hormone fibroblast growth factor-21 (FGF-21) has been demonstrated to have anti-inflammatory and antioxidant properties. However, whether administration of recombinant human (rh) FGF-21 can potentially regulate diabetic keratopathy is still unknown. Therefore, in this work, we investigated the role of rhFGF-21 in the modulation of corneal epithelial wound healing, the inflammation response, and oxidative stress using type 1 diabetic mice and high glucose-treated human corneal epithelial cells. Our experimental results indicated that the application of rhFGF-21 contributed to the enhancement of epithelial wound healing. This treatment also led to advancements in tear production and reduction in corneal edema. Moreover, there was a notable reduction in the levels of proinflammatory cytokines such as TNF-α, IL-6, IL-1ß, MCP-1, IFN-γ, MMP-2, and MMP-9 in both diabetic mouse corneal epithelium and human corneal epithelial cells treated with high glucose. Furthermore, we found rhFGF-21 treatment inhibited reactive oxygen species production and increased levels of anti-inflammatory molecules IL-10 and SOD-1, which suggests that FGF-21 has a protective role in diabetic corneal epithelial healing by increasing the antioxidant capacity and reducing the release of inflammatory mediators and matrix metalloproteinases. Therefore, we propose that administration of FGF-21 may represent a potential treatment for diabetic keratopathy.


Subject(s)
Corneal Diseases , Diabetes Complications , Diabetes Mellitus, Experimental , Epithelium, Corneal , Fibroblast Growth Factors , Inflammation Mediators , Oxidative Stress , Wound Healing , Animals , Humans , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Corneal Diseases/complications , Corneal Diseases/drug therapy , Corneal Diseases/metabolism , Diabetes Complications/drug therapy , Diabetes Complications/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Epithelium, Corneal/drug effects , Fibroblast Growth Factors/pharmacology , Fibroblast Growth Factors/therapeutic use , Glucose/adverse effects , Glucose/metabolism , Inflammation Mediators/metabolism , Matrix Metalloproteinases/metabolism , Oxidative Stress/drug effects , Wound Healing/drug effects
3.
Mater Sci Eng C Mater Biol Appl ; 119: 111555, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33321619

ABSTRACT

Thermosensitive chitosan hydrogels have been widely used in drug delivery and tissue repair, but further applications of these hydrogels have been limited by their weak mechanical strength and poor bioactivity. A thermoresponsive hydrogel formed by conjugating recombinant human collagen-peptide (RHC) with chitosan might be better suited for cell encapsulation and wound repair. RHC-chitosan hydrogels were prepared and tested, and the results showed that moderate RHC conjugation led to hydrogels with lower gelation temperature. The prepared RHC-containing hydrogels showed superior mechanical strength to chitosan-only hydrogels. Additionally, cells exhibited superior viability when cultured with RHC-modified hydrogels compared with hydrogels that had not been conjugated with RHC. Finally, RHC-chitosan hydrogels were injected onto the backs of rats with second-degree burns and promoted cell infiltration, vessel formation, and wound healing. Overall, the use of RHC-chitosan hydrogels is a promising and effective therapeutic approach for burn wound treatment.


Subject(s)
Chitosan , Hydrogels , Animals , Collagen , Hydrogels/pharmacology , Peptides , Rats , Wound Healing
4.
Appl Microbiol Biotechnol ; 103(2): 719-730, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30415427

ABSTRACT

Fibroblast growth factor-21 (FGF-21) is a potential cytokine for type II diabetes mellitus. This study aimed to optimize recombinant human FGF-21 (rhFGF-21) production in Escherichia coli BL21 (DE3) employing high cell density fermentation at a 200-L scale and pilot-scale purification. FGF-21 was eventually expressed in E. coli BL21 (DE3) using human FGF-21 synthetic DNA sequence via the introduction of vector pET-3c; the product is used as seed strain during the fermentation of rhFGF-21. Fermentation of rhFGF-21 was performed in a 30-L and 200-L fermenters. rhFGF-21 was primarily expressed in the form of inclusion bodies after IPTG induction. At the 200-L scale, the bacterial production and expression levels of rhFGF-21 were 38.8 ± 0.6 g/L and 30.9 ± 0.7%, respectively. Additionally, the high purification (98%) of rhFGF-21 was tested with HPLC analysis and reducing & non-reducing SDS-PAGE analysis. The final yield of purified rhFGF-21 was 71.1 ± 13.9 mg/L. The activity of rhFGF-21 stock solution reached at 68.67 ± 8.74 IU/mg. Blood glucose controlling and insulin sensitization were improved with treatment of rhFGF-21 in type II diabetic ob/ob mice. Our results showed that the relatively stable and time-saving pilot-scale production process was successfully established, providing an efficient and cost-effective strategy for large-scale and industrial production of rhFGF-21.


Subject(s)
Escherichia coli/metabolism , Fibroblast Growth Factors/administration & dosage , Fibroblast Growth Factors/metabolism , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/metabolism , Recombinant Proteins/administration & dosage , Recombinant Proteins/metabolism , Animals , Escherichia coli/genetics , Escherichia coli/growth & development , Fermentation , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/pharmacology , Humans , Hypoglycemic Agents/pharmacology , Mice, Obese , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Treatment Outcome
5.
ACS Biomater Sci Eng ; 4(5): 1661-1668, 2018 May 14.
Article in English | MEDLINE | ID: mdl-33445322

ABSTRACT

Hydrogels are excellent drug delivery carriers with excellent ductility. Here, we report the design of a higher biostability of a recombinant human acidic fibroblast growth factor (rh-aFGF) carbomer hydrogel formulation. To verify the optimality of this formula, we prepared various prescriptions and tested the resulting physical properties including micromorphology, long-term stability, accelerated stability, and destructive test. Furthermore, the efficacy for promoting wound healing in full-thickness injury and scald wound diabetic rat models was explored. We found that rh-aFGF-carbomer hydrogel had good physical properties. It was stable for 24 months at 5 ± 3 °C, and for 6 months at 25 ± 3 °C. In vivo, the rh-aFGF-carbomer 940 hydrogel achieved a remarkable promotion of skin wound healing in diabetic rats with full-thickness injuries or scald wounds. Our data suggest that rh-aFGF-carbomer hydrogel may have applications for the treatment of diabetic ulcers combined with other wounds.

6.
Bioconjug Chem ; 29(2): 287-295, 2018 02 21.
Article in English | MEDLINE | ID: mdl-29278321

ABSTRACT

This study investigated the effect of the excipients, including glycine, mannitol, arginine, trehalose, sorbitol, and poloxamer188, on the stability of recombinant human fibroblast growth factor 21(FGF21) during the process of lyophilization and storage. The glass transition temperature (Tg), protein secondary structure, aggregation ratio, and the bioactivity of lyophilized FGF21 were measured. We furthermore investigated the effect of FGF21 against ischemia cerebral injury using the middle cerebral artery occlusion (MCAO) model in rats. The ischemia cerebral injury of MCAO rats was analyzed via 2,3,5-triphenyltetrazolium chloride and Nissl-staining. Endoplasmic reticulum (ER) stress related proteins were detected via Western blot. In this study, we found that aggregation was the primary mode of deterioration of lyophilized FGF21under accelerated storage conditions. Mannitol combined with trehalose and glycine formulations offers the most effective protein protection to reduce the aggregation. Administration of FGF21 protected cerebral ischemia and decreased ER stress related proteins in MCAO rats and PC12 cells.


Subject(s)
Brain Ischemia/drug therapy , Fibroblast Growth Factors/chemistry , Fibroblast Growth Factors/therapeutic use , Freeze Drying/methods , Infarction, Middle Cerebral Artery/drug therapy , Animals , Brain Ischemia/pathology , Endoplasmic Reticulum Stress/drug effects , Excipients/chemistry , Infarction, Middle Cerebral Artery/pathology , Male , PC12 Cells , Protein Aggregates , Protein Stability , Protein Structure, Secondary , Rats , Rats, Sprague-Dawley , Recombinant Proteins/chemistry , Recombinant Proteins/therapeutic use , Transition Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...