Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Bioinformatics ; 25(1): 182, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724920

ABSTRACT

BACKGROUND: The prediction of drug sensitivity plays a crucial role in improving the therapeutic effect of drugs. However, testing the effectiveness of drugs is challenging due to the complex mechanism of drug reactions and the lack of interpretability in most machine learning and deep learning methods. Therefore, it is imperative to establish an interpretable model that receives various cell line and drug feature data to learn drug response mechanisms and achieve stable predictions between available datasets. RESULTS: This study proposes a new and interpretable deep learning model, DrugGene, which integrates gene expression, gene mutation, gene copy number variation of cancer cells, and chemical characteristics of anticancer drugs to predict their sensitivity. This model comprises two different branches of neural networks, where the first involves a hierarchical structure of biological subsystems that uses the biological processes of human cells to form a visual neural network (VNN) and an interpretable deep neural network for human cancer cells. DrugGene receives genotype input from the cell line and detects changes in the subsystem states. We also employ a traditional artificial neural network (ANN) to capture the chemical structural features of drugs. DrugGene generates final drug response predictions by combining VNN and ANN and integrating their outputs into a fully connected layer. The experimental results using drug sensitivity data extracted from the Cancer Drug Sensitivity Genome Database and the Cancer Treatment Response Portal v2 reveal that the proposed model is better than existing prediction methods. Therefore, our model achieves higher accuracy, learns the reaction mechanisms between anticancer drugs and cell lines from various features, and interprets the model's predicted results. CONCLUSIONS: Our method utilizes biological pathways to construct neural networks, which can use genotypes to monitor changes in the state of network subsystems, thereby interpreting the prediction results in the model and achieving satisfactory prediction accuracy. This will help explore new directions in cancer treatment. More available code resources can be downloaded for free from GitHub ( https://github.com/pangweixiong/DrugGene ).


Subject(s)
Antineoplastic Agents , Deep Learning , Neural Networks, Computer , Humans , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Neoplasms/genetics , Cell Line, Tumor , DNA Copy Number Variations , Computational Biology/methods
2.
Nucleic Acids Res ; 51(18): 9552-9566, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37697433

ABSTRACT

Intrinsic DNA properties including bending play a crucial role in diverse biological systems. A recent advance in a high-throughput technology called loop-seq makes it possible to determine the bendability of hundred thousand 50-bp DNA duplexes in one experiment. However, it's still challenging to assess base-resolution sequence bendability in large genomes such as human, which requires thousands of such experiments. Here, we introduce 'BendNet'-a deep neural network to predict the intrinsic DNA bending at base-resolution by using loop-seq results in yeast as training data. BendNet can predict the DNA bendability of any given sequence from different species with high accuracy. To explore the utility of BendNet, we applied it to the human genome and observed DNA bendability is associated with chromatin features and disease risk regions involving transcription/enhancer regulation, DNA replication, transcription factor binding and extrachromosomal circular DNA generation. These findings expand our understanding on DNA mechanics and its association with transcription regulation in mammals. Lastly, we built a comprehensive resource of genomic DNA bendability profiles for 307 species by applying BendNet, and provided an online tool to assess the bendability of user-specified DNA sequences (http://www.dnabendnet.com/).

SELECTION OF CITATIONS
SEARCH DETAIL
...