Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 89(7): 1860-1878, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619908

ABSTRACT

The activated persulfate (PS) process could produce sulfate radical (SO4·-) and rapidly degrade organic pollutants. The application of Fe3O4 as a promising PS activator was limited due to the rapid conversion of Fe2+ to Fe3+ on its surface. Mo4+ on MoS2 surface could be used as a reducing site to convert Fe3+ to Fe2+, but the separation and recovery of MoS2 was complex. In this study, MoS2/Fe3O4 was prepared to accelerate the Fe3+/Fe2+ cycle on Fe3O4 surface and achieved efficient separation of MoS2. The results showed that MoS2/Fe3O4 was more effective for PS activation compared to Fe3O4 or MoS2, with a removal efficiency of 91.8% for 20 mg·L-1 tetracycline (TC) solution under the optimal conditions. Fe2+ and Mo4+ on MoS2/Fe3O4 surface acted as active sites for PS activation with the generation of SO4•-, •OH, •O2-, and 1O2. Mo4+ acted as an electron donor to promote the Fe3+/Fe2+ cycling and thus improved the PS activation capability of MoS2/Fe3O4. The degradation pathways of TC were inferred as hydroxylation, ketylation of dimethylamino group and C-N bond breaking. This study provided a promising activated persulfate-based advanced oxidation process for the efficient degradation of TC by employing MoS2/Fe3O4 as an effective activator.


Subject(s)
Molybdenum , Water Pollutants, Chemical , Tetracycline/analysis , Oxidation-Reduction , Anti-Bacterial Agents , Magnetic Phenomena , Water Pollutants, Chemical/chemistry
2.
J Environ Sci (China) ; 20(4): 499-504, 2008.
Article in English | MEDLINE | ID: mdl-18575138

ABSTRACT

To study the characteristics of stabilization in semi-aerobic landfill, large-scale simulated landfill was constructed based on the semi-aerobic landfill theory. Consequently, the concentrations of chemical oxygen demand (COD), ammonia nitrogen, and nitrite nitrogen, and the pH value in leachate, as well as the component contents of landfill gas composition (methane, carbon dioxide, and oxygen) in landfill were regularly monitored for 52 weeks. The results showed that COD and ammonia concentrations declined rapidly and did not show the accumulating rule like anaerobic landfill, and remained at about 300 and 100 mg/L, respectively, after 48 weeks. Meanwhile, the descending rate reached 98.9% and 96.9%, respectively. Nitrate concentration increased rapidly after 24 weeks and fluctuated between 220-280 mg/L after 43 weeks. The pH values were below 7 during the first 8 weeks and after that leachates appeared to be alkaline. Carbon dioxide was the main composition in landfill gas and its concentration remained at a high level through the whole stabilization process. The average contents of carbon dioxide, oxygen, and methane varied between 19 vol.%-28 vol.%, 2 vol.%-8 vol.%, and 5 vol.%-13 vol.%, respectively. A relative equilibrium was reached after 48 weeks. The highest temperature in the landfill chamber could amount to 75.8 degrees centigrade.


Subject(s)
Aerobiosis , Gases , Refuse Disposal , Hydrogen-Ion Concentration , Nitrogen/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...