Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 13(3)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38534452

ABSTRACT

Circular RNAs (circRNAs) are important regulatory molecules involved in various biological processes. However, the potential function of circRNAs in the turning red process of Quercus mongolica leaves is unclear. This study used RNA-seq data to identify 6228 circRNAs in leaf samples from four different developmental stages and showed that 88 circRNAs were differentially expressed. A correlation analysis was performed between anthocyanins and the circRNAs. A total of 16 circRNAs that may be involved in regulating the colour of Mongolian oak leaves were identified. CircRNAs may affect the colour of Q. mongolica leaves by regulating auxin, cytokinin, gibberellin, ethylene, and abscisic acid. This study revealed the potential role of circRNAs in the colour change of Q. mongolica leaves.

2.
PLoS One ; 16(9): e0254627, 2021.
Article in English | MEDLINE | ID: mdl-34492027

ABSTRACT

We used fresh leaves of Sophora japonica L. variety 'Qingyun 1' (A0) and 10 superior clones of the same species (A1-A10) to explore leaf morphological characteristics and total particle retention per unit leaf area under natural and artificial simulated dust deposition treatments. Our objectives were to explore the relationship between the two methods and to assess particle size distribution, X-ray fluorescence (XRF) heavy metal content, and scanning electron and atomic force microscopy (SEM and AFM) characteristics of leaf surface microstructure. Using the membership function method, we evaluated the dust retention capacity of each clone based on the mean degree of membership of its dust retention index. Using correlation analysis, we selected leaf morphological and SEM and AFM indices related significantly to dust retention capacity. Sophora japonica showed excellent overall dust retention capacity, although this capacity differed among clones. A5 had the strongest overall retention capacity, A2 had the strongest retention capacity for PM2.5, A9 had the strongest retention capacity for PM2.5-10, A0 had the strongest retention capacity for PM>10, and A2 had the strongest specific surface area (SSA) and heavy metal adsorption capacity. Overall, A1 had the strongest comprehensive dust retention ability, A5 was intermediate, and A7 had the weakest capacity. Certain leaf morphological and SEM and AFM characteristic indices correlated significantly with the dust retention capacity.


Subject(s)
Air Pollutants/analysis , Dust/analysis , Particulate Matter/analysis , Sophora/chemistry , Adsorption , China , Environmental Monitoring , Plant Leaves/anatomy & histology , Plant Leaves/chemistry , Plant Leaves/metabolism , Sophora/anatomy & histology , Sophora/metabolism
3.
Int J Mol Sci ; 20(23)2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31779118

ABSTRACT

Species identification of oaks (Quercus) is always a challenge because many species exhibit variable phenotypes that overlap with other species. Oaks are notorious for interspecific hybridization and introgression, and complex speciation patterns involving incomplete lineage sorting. Therefore, accurately identifying Quercus species barcodes has been unsuccessful. In this study, we used chloroplast genome sequence data to identify molecular markers for oak species identification. Using next generation sequencing methods, we sequenced 14 chloroplast genomes of Quercus species in this study and added 10 additional chloroplast genome sequences from GenBank to develop a DNA barcode for oaks. Chloroplast genome sequence divergence was low. We identified four mutation hotspots as candidate Quercus DNA barcodes; two intergenic regions (matK-trnK-rps16 and trnR-atpA) were located in the large single copy region, and two coding regions (ndhF and ycf1b) were located in the small single copy region. The standard plant DNA barcode (rbcL and matK) had lower variability than that of the newly identified markers. Our data provide complete chloroplast genome sequences that improve the phylogenetic resolution and species level discrimination of Quercus. This study demonstrates that the complete chloroplast genome can substantially increase species discriminatory power and resolve phylogenetic relationships in plants.


Subject(s)
Chloroplasts/genetics , DNA Barcoding, Taxonomic/methods , Quercus/classification , Evolution, Molecular , Genetic Markers , Genome, Chloroplast , High-Throughput Nucleotide Sequencing , Mutation , Phylogeny , Quercus/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...