Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Res Int ; 2018: 4506829, 2018.
Article in English | MEDLINE | ID: mdl-29651434

ABSTRACT

Lactobacillus plantarum, a probiotic, has a high survival rate and high colonization ability in the gastrointestinal tract. Tolerance to the gastrointestinal environment and adhesion to intestinal epithelial cells by some Lactobacillus species (excluding L. plantarum) are related to luxS/AI-2. Here, the role of luxS in tolerance to simulated digestive juice (SDJ) and adhesion to Caco-2 cells by L. plantarum KLDS1.0391 (hereafter, KLDS1.0391) was investigated. The KLDS1.0391 luxS mutant strain was constructed by homologous recombination. When luxS was deleted, acid and bile salt tolerance and survival rates in SDJ significantly decreased (p < 0.05 for all). The ability of the luxS deletion strain to adhere to Caco-2 cells was markedly lower than that of the wild-type strain (p < 0.05). The ability of the luxS mutant strain to adhere (competition, exclusion, and displacement) to Escherichia coli ATCC 25922 was significantly lower than that of the wild-type strain (p < 0.05 for all). A significant decrease was noted only in the exclusion adhesion inhibition of the luxS mutant strain to Salmonella typhimurium ATCC 14028 (p < 0.05). These results indicate that the luxS gene plays an important role in the gastrointestinal environment tolerance and adhesion ability of KLDS1.0391.


Subject(s)
Bacterial Adhesion/physiology , Bacterial Proteins/metabolism , Carbon-Sulfur Lyases/metabolism , Lactobacillus plantarum/metabolism , Mutation , Stress, Physiological , Bacterial Proteins/genetics , Caco-2 Cells , Carbon-Sulfur Lyases/genetics , Humans , Lactobacillus plantarum/genetics
2.
Sci Rep ; 7(1): 13871, 2017 10 24.
Article in English | MEDLINE | ID: mdl-29066774

ABSTRACT

Certain probiotic species of lactic acid bacteria, especially Lactobacillus plantarum, regulate bacteriocin synthesis through quorum sensing (QS) systems. In this study, we aimed to investigate the luxS-mediated molecular mechanisms of QS during bacteriocin synthesis by L. plantarum KLDS1.0391. In the absence of luxS, the 'spot-on-the-lawn' method showed that the bacteriocin production by L. plantarum KLDS1.0391 significantly decreased upon co-cultivation with L. helveticus KLDS1.9207 (P < 0.01) but did not change significantly when mono-cultivated. Furthermore, liquid chromatography-electrospray ionization tandem mass spectrometry analysis showed that, as a response to luxS deletion, L. plantarum KLDS1.0391 altered the expression level of proteins involved in carbohydrate metabolism, amino acid metabolism, fatty acid synthesis and metabolism, and the two-component regulatory system. In particular, the sensor histidine kinase AgrC (from the two-component system, LytTR family) was expressed differently between the luxS mutant and the wild-type strain during co-cultivation, whereas no significant differences in proteins related to bacteriocin biosynthesis were found upon mono-cultivation. In summary, we found that the production of bacteriocin was regulated by carbohydrate metabolism, amino acid metabolism, fatty acid synthesis and metabolism, and the two-component regulatory system. Furthermore, our results demonstrate the role of luxS-mediated molecular mechanisms in bacteriocin production.


Subject(s)
Bacterial Proteins/genetics , Bacteriocins/biosynthesis , Carbon-Sulfur Lyases/genetics , Lactobacillus plantarum/genetics , Lactobacillus plantarum/metabolism , Proteomics , Cell Count , Gene Expression Regulation, Bacterial , Lactobacillus plantarum/cytology , Mutation , Quorum Sensing/genetics
3.
Genomics ; 109(5-6): 432-437, 2017 10.
Article in English | MEDLINE | ID: mdl-28676278

ABSTRACT

Lactobacillus plantarum KLDS1.0391 is a probiotic strain isolated from the traditional fermented dairy products and identified to produce bacteriocin against Gram-positive and Gram-negative bacteria. Previous studies showed that the strain has a high resistance to gastrointestinal stress and has a high adhesion ability to the intestinal epithelial cells (Caco-2). We reported the entire genome sequence of this strain, which contains a circular 2,886,607-bp chromosome and three circular plasmids. Genes, which are related to the biosynthesis of bacteriocins, the stress resistance to gastrointestinal tract environment and adhesive performance, were identified. Whole genome sequence of Lactobacillus plantarum KLDS1.0391 will be helpful for its applications in food industry.


Subject(s)
Bacteriocins/biosynthesis , Genome, Bacterial , Lactobacillus plantarum/physiology , Sequence Analysis, DNA/methods , Bacterial Adhesion , Bacterial Proteins/genetics , Bacteriocins/genetics , Caco-2 Cells , Gastrointestinal Tract/microbiology , Genome Size , Humans , Lactobacillus plantarum/genetics , Multigene Family , Probiotics , Stress, Physiological
4.
J Phys Chem B ; 109(25): 12467-73, 2005 Jun 30.
Article in English | MEDLINE | ID: mdl-16852541

ABSTRACT

The adsorption, vibration, and diffusion of O atoms on Rh(100), Rh(111), Rh(110), and Rh(711) surfaces were studied using the 5-parameter Morse potential (5-MP) of interaction between an adatom and a metal surface cluster. Our theoretical calculations provide information about adsorption sites, adsorption geometry, binding energy, and eigenvibration. Our results agreed very well with experimental results. Four major results follow. First, the theoretical calculation showed that on the Rh(100) surface the 4-fold hollow site is the only adsorption site. Second, on the O-Rh(111) system, the 3-fold hollow site is the stable adsorption site. Third, on the Rh(110) surface at low coverage, the O atom is adsorbed preferably on the pseudo-3-fold site, while with increasing coverage, the O atom is adsorbed not only on the pseudo-3-fold site but also on the long bridge site. Last, as for the Rh(711) stepped surface, the 3-fold site on the (111) step is metastable, whereas the 4-fold sites on the (100) terrace are stable, which enables the O atoms to diffuse easily from the 3-fold to the 4-fold site at low coverage. Therefore, the O atoms are adsorbed preferrably on the stable 4-fold sites of the (100) terrace and then later as coverage increases on the metastable 3-fold site of the (110) step.

SELECTION OF CITATIONS
SEARCH DETAIL
...