Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 30(2): e17181, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38372171

ABSTRACT

Nitrous oxide (N2 O) is a potent greenhouse gas and causes stratospheric ozone depletion. While the emissions of N2 O from soil are widely recognized, recent research has shown that terrestrial plants may also emit N2 O from their leaves under controlled laboratory conditions. However, it is unclear whether foliar N2 O emissions are universal across varying plant taxa, what the global significance of foliar N2 O emissions is, and how the foliage produces N2 O in situ. Here we investigated the abilities of 25 common plant taxa, including trees, shrubs and herbs, to emit N2 O under in situ conditions. Using 15 N isotopic labeling, we demonstrated that the foliage-emitted N2 O was predominantly derived from nitrate. Moreover, by selectively injecting biocide in conjunction with the isolating and back-inoculating of endophytes, we demonstrated that the foliar N2 O emissions were driven by endophytic bacteria. The seasonal N2 O emission rates ranged from 3.2 to 9.2 ng N2 O-N g-1 dried foliage h-1 . Extrapolating these emission rates to global foliar biomass and plant N uptake, we estimated global foliar N2 O emission to be 1.21 and 1.01 Tg N2 O-N year-1 , respectively. These estimates account for 6%-7% of the current global annual N2 O emission of 17 Tg N2 O-N year-1 , indicating that in situ foliar N2 O emission is a universal process for terrestrial plants and contributes significantly to the global N2 O inventory. This finding highlights the importance of measuring foliar N2 O emissions in future studies to enable the accurate assigning of mechanisms and the development of effective mitigation.


Subject(s)
Greenhouse Gases , Plants , Soil , Atmosphere , Biomass , Nitrous Oxide/analysis
2.
J Food Biochem ; 43(3): e12745, 2019 03.
Article in English | MEDLINE | ID: mdl-31353560

ABSTRACT

Sour rot is a leading disease of citrus fruit caused by the postharvest pathogen Geotrichum citri-aurantii. It has been reported that essential oils can be used as substitutes for synthetic fungicides to control the pathogen. In this study, changes in metabolites and antifungal effects of G. citri-aurantii treated with peppermint oil (PO) were investigated. The inhibition rate of the mycelial growth increased as the PO concentration increased, and 6 µl PO/disk resulted in a radial growth inhibition of 79.2%. The electrical conductivity of G. citri-aurantii treated with PO increased compared to the control. By comparing the metabolic profiles of treated and untreated G. citri-aurantii cells, a total of 53 distinct metabolites 9 were up-regulated and 44 were down-regulated were found, including 16 lipid metabolites, 6 carbohydrate metabolites, 2 amino acid metabolites, 5 alcohols, 2 glycoside metabolites, and 3 ketone metabolites, etc, and these metabolites are involved in 25 major metabolic pathways. PRACTICAL APPLICATIONS: Chemical fungicides can effectively control G. citri-aurantii during fruit postharvest period. However, synthetic chemical fungicides have gradually led to buildup of resistance of fungil, which seriously causes the frequent of food-borne diseases. PO extracted from natural plants can be used as natural additive in many foods due to their antioxidant, antibacterial, and antifungal properties. Therefore, PO can be considered as a promising bacteriostatic agent for the defense of G. citri-aurantii during fruit postharvest period.


Subject(s)
Fungal Proteins/genetics , Fungicides, Industrial/pharmacology , Geotrichum/chemistry , Geotrichum/drug effects , Plant Oils/pharmacology , Chromatography, High Pressure Liquid , Citrus/microbiology , Fungal Proteins/metabolism , Gas Chromatography-Mass Spectrometry , Gene Expression Regulation, Fungal/drug effects , Geotrichum/genetics , Geotrichum/metabolism , Mentha piperita , Plant Diseases/microbiology , Plant Diseases/prevention & control
3.
Food Nutr Res ; 632019.
Article in English | MEDLINE | ID: mdl-31073285

ABSTRACT

BACKGROUND: Kiwifruit (Actinidia chinensis) peel has been always considered as useless because of the harsh taste. To promote the full utilization of kiwifruit resources it is essential to explore the nutritional benefits of kiwifruit peel. OBJECTIVE: Our studies explored the difference in polyphenolic composition and biological activity including antioxidant, antimicrobial, and antiproliferative activity of the flesh and peel of kiwifruit. DESIGN: Antioxidant activity of the extracted polyphenols of the peel and flesh of A. chinensis was checked by 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis3-ethylbenzothiazoline-6-sulphonic acid (ABTS), hydroxyl ion reduction, and ion chelating ability. Antibacterial activity against Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus and antiproliferative activity against HepG2 was tested in a dose- and time-dependent manner. Liquid chromatography/mass spectrometry (LC/MS) chromatogram of the peel and flesh further differentiated the phenolic acid profile. RESULTS: The pericarp of kiwifruit was found to be more abundant in polyphenols and flavonoids than the flesh, with contents of 12.8 mg/g and 2.7 mg/g, respectively. LC/MS analysis revealed that the catachin, quercetin and epigallocatechin content (the main polyphenols in kiwifruit) in the peel was significantly higher than in the flesh (P < 0.05). The antioxidant and antibacterial activity of the peel was significantly higher when compared to the flesh. Moreover, the proliferation of HepG2 cells was time- and dose-dependently inhibited by kiwifruit polyphenols, with IC50 values of 170 µg/mL and 291 µg/mL for peel and flesh polyphenols after 72 h of treatment time, respectively. CONCLUSION: Kiwifruit peel, with higher content of phenolics and flavonoids, exerts more potent antioxidant, antibacterial, and anticancer activity than the flesh. Our study provides scientific evidence for the development of kiwifruit, especially peel-based, novel natural products with excellent bioactivity.

4.
J Agric Food Chem ; 65(43): 9553-9558, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28994594

ABSTRACT

A novel near-infrared fluorescence off-on probe, (E)-3,3-dimethyl-1-propyl-2-(2-(6-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyloxy)-2,3-dihydro-1H-xanthen-4-yl)vinyl)-3H-indolium (1), is developed and applied to benzoyl peroxide (BPO) detection in real samples and fluorescence imaging in living cells and zebrafish. When arylboronate as the recognition unit is connected to a stable hemicyanine skeleton, the probe is readily prepared, which exhibits superior analytical performance, such as near-infrared fluorescence emission over 700 nm and high sensitivity with a low detection limit of 47 nM. Upon reaction with BPO, phenylboronic acid pinacol ester is oxidized, followed by hydrolysis and 1,4-elimination of o-quinone methide to release fluorophore. In addtion, the probe displays high selectivity toward BPO over other common substances, which makes it of great potential use in quantitative and simple detection of BPO in wheat flour and antimicrobial agent. More importantly, the probe has been successfully demonstrated for monitoring BPO in living HeLa cells and zebrafish. The probe with superior properties could be of great potential use in other biosystems and in vivo studies.


Subject(s)
Benzoyl Peroxide/analysis , Bleaching Agents/analysis , Flour/analysis , Spectrometry, Fluorescence/methods , Triticum/chemistry , Animals , Fluorescent Dyes/chemistry , Food Contamination/analysis , HeLa Cells , Humans , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...