Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Emerg Infect Dis ; 24(4): 663-672, 2018 04.
Article in English | MEDLINE | ID: mdl-29432091

ABSTRACT

Avian influenza A(H7N9) virus has caused 5 epidemic waves in China since its emergence in 2013. We investigated the dynamic changes of antibody response to this virus over 1 year postinfection in 25 patients in Suzhou City, Jiangsu Province, China, who had laboratory-confirmed infections during the fifth epidemic wave, October 1, 2016-February 14, 2017. Most survivors had relatively robust antibody responses that decreased but remained detectable at 1 year. Antibody response was variable; several survivors had low or undetectable antibody titers. Hemagglutination inhibition titer was >1:40 for <40% of the survivors. Measured in vitro in infected mice, hemagglutination inhibition titer predicted serum protective ability. Our findings provide a helpful serologic guideline for identifying subclinical infections and for developing effective vaccines and therapeutics to counter H7N9 virus infections.


Subject(s)
Antibodies, Viral/immunology , Influenza A Virus, H7N9 Subtype/immunology , Influenza, Human/epidemiology , Influenza, Human/immunology , Aged , Animals , Antibodies, Viral/blood , Female , History, 21st Century , Hospitalization , Humans , Influenza A Virus, H7N9 Subtype/classification , Influenza, Human/history , Influenza, Human/virology , Male , Mice , Middle Aged , Serologic Tests , Survivors
2.
Zhonghua Liu Xing Bing Xue Za Zhi ; 34(7): 736-9, 2013 Jul.
Article in Chinese | MEDLINE | ID: mdl-24257181

ABSTRACT

This research aimed to explore the application of autoregressive integrated moving average (ARIMA) model of time series analysis in predicting road traffic injury (RTI) in China and to provide scientific evidence for the prevention and control of RTI. Database was created based on the data collected from monitoring sites in China from 1951 to 2011. The ARIMA model was made. Then it was used to predict RTI in 2012. The ARIMA model of the RTI cases was Yt = e(Y˙t-1+0.456▿Yt-1+et) (et stands for random error). The residual error with 16 lags was white noise and the Ljung-Box test statistic for the model was no statistical significance. The model fitted the data well. True value of RTI cases in 2011 was within 95% CI of predicted values obtained from present model. The model was used to predict value of RTI cases in 2012, and the predictor (95%CI) was 207 838 (107 579-401 536). The ARIMA model could fit the trend of RTI in China.


Subject(s)
Accidents, Traffic/prevention & control , Models, Statistical , Wounds and Injuries/prevention & control , China/epidemiology , Forecasting , Humans , Incidence , Models, Theoretical , Wounds and Injuries/epidemiology
3.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 5): o1294-5, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22590204

ABSTRACT

The asymmetric unit of the title compound, C(6)H(9)ClN(4), contains four independent mol-ecules (A, B, C and D). Their main difference is the torsion angles, ranging from 1.6 (5) to 5.9 (5)°, between the methyl group and the pyrimidine plane. A pair of inter-molecular N-H⋯N hydrogen bonds link mol-ecules A and C into a twisted dimer with a dihedral angle of 32.9 (1)° between the two pyrimidine rings, creating an R(2) (2)(8) motif. In the packing, each two mol-ecules of B, C and D form centrosymmetric dimers through two inter-molecular N-H⋯N hydrogen bonds, locally creating R(2) (2)(8) motifs. The dimers of C and D are alternately bridged by A into an infinite zigzag strip, locally creating two different R(2) (2)(8) motifs with dihedral angles of 32.9 (1) and 63.4 (1)° between the pyrimidine rings. Finally, these strips together with the dimers of B associate into a complicated three-dimensional framework.

4.
Inorg Chem ; 49(4): 1535-50, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-20095627

ABSTRACT

Nine new coordination polymers, namely, [Mn(2)(L)(H(2)O)(4)].H(2)O (1), [Cd(L)(0.5)(H(2)O)] (2), [Zn(5)(L)(2)(mu(3)-O)(2)(H(2)O)(4)].2H(2)O (3), [Zn(4)(L)(2)(mu(3)-O)(2)][Zn(H(2)O)(5)].2H(2)O (4), [Zn(2)(L)(biim-4)(0.5)(H(2)O)(3)].H(2)O (5), [Cd(2)(L)(bpy)(H(2)O)].2H(2)O.0.5(CH(3)CH(2)OH) (6), [Cu(2)(H(2)L)(2)(bpy)(2)] (7), [Cu(2)(L)(bpy)(H(2)O)] (8), and [Cu(2)(L)(bpy)(1.5)(H(2)O)(2.5)] (9), where H(4)L = 1,2,3,4-benzenetetracarboxylic acid, biim-4 = 1,1'-(1,4-butanediyl)bis(imidazole), and bpy = 4,4'-bipyridine, have been synthesized under hydrothermal conditions. Compound 1 displays a rare trinodal (3,4,7)-connected (4(2).6)(4(5).6)(4(7).6(8).8(6)) topology. 2 possesses an alpha-Po net. 3 is a novel 3D framework based on pentanuclear Zn(II) clusters. By adjustment of the pH values of the reaction mixture of 3 with a Na(2)CO(3) solution, a structurally different compound, 4, was obtained, which exhibits a 3D porous framework with the [Zn(H(2)O)(6)](2+) cations located in the channels. 5 is an unusual example of a trinodal (3,5)-connected network with a Schlafli symbol of (4(2).6)(6(2).8)(4(2).6(2).8(5).10), whereas 6, containing tetranuclear Cd(II) clusters, shows a rare (4,6)-connected (4(4).6(2))(2)(4(4).6(10).8) topology. 7 exhibits a unique polythreading network, while 8 displays a scarce trinodal (3,4,5)-connected self-penetrating network. In comparison with 8, the chiral compound 9 possesses an unprecedented tetranodal (2,4)-connected (7)(7(5).11)(6(2).7(3).8)(2)(6.7(4).10)(2) topology. The effects of the carboxylate ligands, the pH values, the reaction temperatures, the central metals, and the neutral ligands were elucidated. The IR spectra, thermogravimetric analysis, and luminescent properties for the compounds were also investigated.

SELECTION OF CITATIONS
SEARCH DETAIL
...