Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38884655

ABSTRACT

Microalgae, compared to macroalgae, exhibit advantages such as rapid growth rates, feasible large-scale cultivation, and high fucoxanthin content. Among these microalgae, Phaeodactylum tricornutum emerges as an optimal source for fucoxanthin production. This paper comprehensively reviews the research progress on fucoxanthin production using Phaeodactylum tricornutum from 2012 to 2022, offering detailed insights into various aspects, including strain selection, media optimization, nutritional requirements, lighting conditions, cell harvesting techniques, extraction solvents, extraction methodologies, as well as downstream separation and purification processes. Additionally, an economic analysis is performed to assess the costs of fucoxanthin production from Phaeodactylum tricornutum, with a comparative perspective to astaxanthin production from Haematococcus pluvialis. Lastly, this paper discusses the current challenges and future opportunities in this research field, serving as a valuable resource for researchers, producers, and industry managers seeking to further advance this domain.

3.
Rice (N Y) ; 16(1): 40, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37713042

ABSTRACT

BACKGROUND: The amino acid content (AAC) of the rice grain is one of the most important determinants of nutritional quality in rice. Understanding the genetic basis of grain AAC and mining favorable alleles of target genes for AAC are important for developing new cultivars with improved nutritional quality. RESULTS: Using a diverse panel of 164 accessions genotyped by 32 M SNPs derived from 3 K Rice Genome Project, we extracted 1,123,603 high quality SNPs in 44,248 genes and used them to construct haplotypes. We measured the contents of the 17 amino acids that included seven essential amino acids and 10 dispensable amino acids. Through a genome-wide haplotype association study, 261 gene-trait associations containing 174 genes for the 17 components of AAC were detected, and 34 of these genes were associated with at least two components. Furthermore, the associated SNPs in genes were also identified by a traditional genome-wide association study to identify the key natural variations in the specific genes. CONCLUSIONS: The genome-wide haplotype association study allowed us to detected candidate genes directly and to identify key natural genetic variation as well. In the present study, twelve genes have been cloned, and 34 genes were associated with at least two components, suggesting that the genome-wide haplotype association study approach used in the current study is an efficient way to identify candidate genes for target traits. The identified candidate genes, favorable haplotypes, and key natural variations affecting AAC provide valuable resources for further functional characterization and genetic improvement of rice nutritional quality.

4.
Phys Chem Chem Phys ; 25(5): 4332-4339, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36689259

ABSTRACT

Environmental pollution and the shortage of drinking water are the challenges that mankind is facing. Solar interface evaporation technology has been demonstrated as an important method for producing clean water, but its application to sewage still faces problems, mainly manifested in solubility and oily pollutants. Therefore, an evaporator device contains a superhydrophobic Bi2WO6 felt floating layer, a filter paper hydrophilic layer, and a copper foam/CuO photothermal layer, of which the water contact angle of the superhydrophobic felt can reach 159°. The floating layer not only has the ability to adsorb n-hexane but the Rh B degradation can also be realized under indoor/outdoor light conditions. The carrier life of Bi2WO6 is 28.8 ns. A copper foam/CuO photothermal layer prepared through a low-temperature treatment is combined with the floating and hydrophilic layer to obtain an evaporation rate of 1.53 kg m-2 h-1.

5.
Int J Mol Sci ; 23(17)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36077059

ABSTRACT

Wheat stripe (yellow) rust is a worldwide disease that seriously reduces wheat grain yield and quality. Adult-plant resistance (APR) to stripe rust is generally more durable but usually controlled by multiple genes with partial resistance. In this study, a recombinant inbred line population was developed from a cross between a Chinese wheat landrace, Tutoumai, with APR to stripe rust, and a highly susceptible wheat cultivar, Siyang 936. The population was genotyped by genotyping-by-sequencing and phenotyped for APR to stripe rust in four consecutive field experiments. Three QTLs, QYr.sdau-1BL, QYr.sdau-5BL, and QYr.sdau-6BL, were identified for APR to stripe rust, and explained 8.0-21.2%, 10.1-22.7%, and 11.6-18.0% of the phenotypic variation, respectively. QYr.sdau-1BL was further mapped to a 21.6 Mb region using KASP markers derived from SNPs identified by RNA-seq of the two parents. In the QYr.sdau-1BL region, 13 disease-resistance-related genes were differently expressed between the two parents, and therefore were considered as the putative candidates of QYr.sdau-1BL. This study provides favorable gene/QTL and high-throughput markers to breeding programs for marker-assisted selection of the wheat stripe rust APR genes.


Subject(s)
Basidiomycota , Triticum , Basidiomycota/genetics , China , Chromosome Mapping , Disease Resistance/genetics , Plant Breeding , Plant Diseases/genetics , Triticum/genetics
6.
Theor Appl Genet ; 134(9): 2857-2873, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34075443

ABSTRACT

KEY MESSAGE: High-resolution genome-wide association study (GWAS) facilitated QTL fine mapping and candidate gene identification, and the GWAS based genomic prediction models were highly predictive and valuable in wheat genomic breeding. Wheat is a major staple food crop and provides more than one-fifth of the daily calories and dietary proteins for humans. Genome-wide association study (GWAS) and genomic selection (GS) for wheat stress resistance and tolerance related traits are critical to understanding their genetic architecture for improvement of breeding selection efficiency. However, the insufficient marker density in previous studies limited the utility of GWAS and GS in wheat genomic breeding. Here, we conducted a high-resolution GWAS for wheat leaf rust (LR), yellow rust (YR), powdery mildew (PM), and cold tolerance (CT) by genotyping a panel of 768 wheat cultivars using genotyping-by-sequencing. Among 153 quantitative trait loci (QTLs) identified, 81 QTLs were delimited to ≤ 1.0 Mb intervals with three validated using bi-parental populations. Furthermore, 837 stress resistance-related genes were identified in the QTL regions with 12 showing induced expression by YR and PM pathogens. Genomic prediction using 2608, 4064, 3907, and 2136 pre-selected SNPs based on GWAS and genotypic correlations between the SNPs showed high prediction accuracies of 0.76, 0.73, and 0.78 for resistance to LR, YR, and PM, respectively, and 0.83 for resistance to cold damage. Our study laid a solid foundation for large-scale QTL fine mapping, candidate gene validation and GS in wheat.


Subject(s)
Chromosomes, Plant/genetics , Cold Temperature , Disease Resistance/immunology , Genome, Plant , Plant Diseases/immunology , Plant Proteins/metabolism , Triticum/genetics , Basidiomycota/physiology , Chromosome Mapping/methods , Disease Resistance/genetics , Gene Expression Regulation, Plant , Genome-Wide Association Study , Plant Breeding , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Triticum/growth & development , Triticum/microbiology
7.
Mol Plant ; 13(9): 1311-1327, 2020 09 07.
Article in English | MEDLINE | ID: mdl-32702458

ABSTRACT

Wheat (Triticum aestivum) is a major staple food crop worldwide. Genetic dissection of important agronomic traits is essential for continuous improvement of wheat yield to meet the demand of the world's growing population. We conducted a large-scale genome-wide association study (GWAS) using a panel of 768 wheat cultivars that were genotyped with 327 609 single-nucleotide polymorphisms generated by genotyping-by-sequencing and detected 395 quantitative trait loci (QTLs) for 12 traits under 7 environments. Among them, 273 QTLs were delimited to ≤1.0-Mb intervals and 7 of them are either known genes (Rht-D, Vrn-B1, and Vrn-D1) that have been cloned or known QTLs (TaGA2ox8, APO1, TaSus1-7B, and Rht12) that were previously mapped. Eight putative candidate genes were identified for three QTLs that enhance spike seed setting and grain size using gene expression data and were validated in three bi-parental populations. Protein sequence analysis identified 33 putative wheat orthologs that have high identity with rice genes in QTLs affecting similar traits. Large r2 values for additive effects observed among the QTLs for most traits indicated that the phenotypes of these identified QTLs were highly predictable. Results from this study demonstrated that significantly increasing GWAS population size and marker density greatly improves detection and identification of candidate genes underlying a QTL, solidifying the foundation for large-scale QTL fine mapping, candidate gene validation, and developing functional markers for genomics-based breeding in wheat.


Subject(s)
Genome-Wide Association Study/methods , Triticum/genetics , Chromosomes, Plant/genetics , Quantitative Trait Loci/genetics
8.
Rice (N Y) ; 12(1): 88, 2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31792643

ABSTRACT

BACKGROUND: Soil salinity is one of the main environmental conditions that affects rice production. Identifying the genetic loci that affect rice salt tolerance (ST)-related traits at the seedling stage, especially under saline field conditions, is crucial for ST rice breeding by pyramiding ST genes that act at different developmental stages. RESULTS: Large phenotypic variations were observed in 708 rice accessions, and yield and its related traits were considerably limited when exposed to salt stress. In a genome-wide association study (GWAS), 2255 marker-trait association signals were detected for all measured traits, and the significant SNPs were distributed in 903 genes. Of these, 43 genes processed same functional annotation, and the gene ontology terms "biological processes" and "molecular function" with the known genes responsive to salt stress in rice. Further haplotype analysis detected 15 promising candidates significantly associated with the target traits, including five known genes and 10 novel genes. We identified seven accessions carrying favorable haplotypes of four genes significantly associated with grain yield that performed well under saline stress conditions. CONCLUSIONS: Using high density SNPs within genes to conduct GWAS is an effective way to identify candidate genes for salt tolerance in rice. Five known genes (OsMYB6, OsGAMYB, OsHKT1;4, OsCTR3, and OsSUT1) and two newly identified genes (LOC_Os02g49700, LOC_Os03g28300) significantly associated with grain yield and its related traits under saline stress conditions were identified. These promising candidates provide valuable resources for validating potential ST-related genes and will facilitate rice breeding for salt tolerance through marker-assisted selection.

9.
Theor Appl Genet ; 132(11): 3115-3128, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31399755

ABSTRACT

KEY MESSAGE: The quantitative trait loci (QTLs) for grain morphological traits were identified via nested association mapping and validated in a natural wheat population via haplotype analysis. Grain weight, one of the three most important components of crop yield, is largely determined by grain morphological traits. Dissecting the genetic bases of grain morphology could facilitate the improvement of grain weight and yield production. In this study, four wheat recombinant inbred line populations constructed by crossing the modern variety Yanzhan 1 with three semi-wild wheat varieties (i.e., Chayazheda, Yutiandaomai, and Yunnanxiaomai from Xinjiang, Tibet, and Yunnan, respectively) and one exotic accession Hussar from Great Britain were investigated for grain weight and eight morphological traits in seven environments. Eighty-eight QTLs for all measured traits were totally identified through nested association mapping utilizing 14,643 high-quality polymorphic single nucleotide polymorphism (SNP) markers generated by 90 K SNP array. Among them, 64 (72.7%) QTLs have the most favorable alleles donated by semi-wild wheat varieties. For 14 QTL clusters affecting at least two grain morphological traits, nine QTL clusters were located in similar position with known genes/QTL, and the other five were novel. Three important novel QTLs (i.e., qTGW-1B.1, qTGW-1B.2, and qTGW-1A.1) were further validated in a natural wheat population via haplotype analysis. The favorable haplotypes for these three QTLs might be used in marker-assisted selection for the improvement of wheat yield by modifying morphological traits.


Subject(s)
Genetics, Population , Quantitative Trait Loci , Seeds/anatomy & histology , Triticum/genetics , Alleles , China , Chromosome Mapping , Genotype , Haplotypes , Phenotype , Polymorphism, Single Nucleotide , Tibet , United Kingdom
10.
Rice (N Y) ; 12(1): 61, 2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31399885

ABSTRACT

BACKGROUND: Arsenic (As) is an unwanted toxic mineral that threatens the major rice-growing regions in the world, especially in South Asia. Rice production in Bangladesh and India depends on As-contaminated groundwater sources for irrigating paddy fields, resulting in elevated amounts of As in the topsoil. Arsenic accumulating in rice plants has a significant negative effect on human and animal health. Here, we present a quantitative trait locus (QTL) mapping study to identify candidate genes conferring As toxicity tolerance and accumulation in rice (Oryza sativa L.) seedlings. An early backcross breeding population consisting of 194 lines derived from a cross between WTR1 (indica) and Hao-an-nong (japonica) was grown in hydroponics for 25 days, from the seventh day exposed to an environmentally relevant concentration of 10 ppm As. RESULTS: Arsenic toxicity leads to significantly negative plant responses, including reduced biomass, stunted plant growth, reduced leaf chlorophyll content, and increased shoot As concentration ranging from 9 to 20 mg kg- 1. Marker-trait association was determined for seven As-related traits using 704 single nucleotide polymorphism (SNP) markers generated from a 6 K SNP-array. One QTL was mapped on chromosome 1 for relative chlorophyll content, two QTLs for As content in roots were mapped on chromosome 8, and six QTLs for As content in shoots were mapped on chromosomes 2, 5, 6, and 9. Using the whole-genome sequence of the parents, we narrowed down the number of candidate genes associated with the QTL intervals based on the existence of a non-synonymous mutation in genes between the parental lines. Also, by using publicly available gene expression profiles for As stress, we further narrowed down the number of candidate genes in the QTL intervals by comparing the expression profiles of genes under As stress and control conditions. Twenty-five genes showing transcription regulation were considered as candidate gene nominees for As toxicity-related traits. CONCLUSIONS: Our study provides insight into the genetic basis of As tolerance and uptake in the early seedling stage of rice. Comparing our findings with the previously reported QTLs for As toxicity stress in rice, we identified some novel and co-localized QTLs associated with As stress. Also, the mapped QTLs harbor gene models of known function associated with stress responses, metal homeostasis, and transporter activity in rice. Overall, our findings will assist breeders with initial marker information to develop suitable varieties for As-contaminated ecosystems.

11.
Int J Mol Sci ; 20(4)2019 Feb 19.
Article in English | MEDLINE | ID: mdl-30791412

ABSTRACT

The development of rice cultivars with nutrient use efficiency (NuUE) is highly crucial for sustaining global rice production in Asia and Africa. However, this requires a better understanding of the genetics of NuUE-related traits and their relationship to grain yield. In this study, simultaneous efforts were made to develop nutrient use efficient rice cultivars and to map quantitative trait loci (QTLs) governing NuUE-related traits in rice. A total of 230 BC1F5 introgression lines (ILs) were developed from a single early backcross population involving Weed Tolerant Rice 1, as the recipient parent, and Hao-an-nong, as the donor parent. The ILs were cultivated in field conditions with a different combination of fertilizer schedule under six nutrient conditions: minus nitrogen (⁻N), minus phosphorus (⁻P), (⁻NP), minus nitrogen phosphorus and potassium (⁻NPK), 75% of recommended nitrogen (75N), and NPK. Analysis of variance revealed that significant differences (p < 0.01) were noted among ILs and treatments for all traits. A high-density linkage map was constructed by using 704 high-quality single nucleotide polymorphism (SNP) markers. A total of 49 main-effect QTLs were identified on all chromosomes, except on chromosome 7, 11 and 12, which are showing 20.25% to 34.68% of phenotypic variation. With further analysis of these QTLs, we refined them to four top hotspot QTLs (QTL harbor-I to IV) located on chromosomes 3, 5, 9, and 11. However, we identified four novel putative QTLs for agronomic efficiency (AE) and 22 QTLs for partial factor productivity (PFP) under ⁻P and 75N conditions. These interval regions of QTLs, several transporters and genes are located that were involved in nutrient uptake from soil to plant organs and tolerance to biotic and abiotic stresses. Further, the validation of these potential QTLs, genes may provide remarkable value for marker-aided selection and pyramiding of multiple QTLs, which would provide supporting evidence for the enhancement of grain yield and cloning of NuUE tolerance-responsive genes in rice.


Subject(s)
Crosses, Genetic , Genetics, Population , Nutritional Physiological Phenomena , Oryza/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Quantitative Trait, Heritable , Analysis of Variance , Biological Variation, Population , Oryza/metabolism , Phenotype
12.
PLoS One ; 13(9): e0200846, 2018.
Article in English | MEDLINE | ID: mdl-30222760

ABSTRACT

Low temperature stress is one of the major abiotic stresses limiting the productivity of Geng (japonica) rice grown the temperate regions as well as in tropical high lands worldwide. To develop rice varieties with improved cold tolerance (CT) at the reproductive stage, 84 BC2 CT introgression lines (ILs) were developed from five populations through backcross breeding. These CT ILs plus 310 random ILs from the same BC populations were used for dissecting genetic networks underlying CT in rice by detecting QTLs and functional genetic units (FGUs) contributing to CT. Seventeen major QTLs for CT were identified using five selective introgression populations and the method of segregation distortion. Of them, three QTLs were confirmed using the random populations and seven others locate in the regions with previously reported CT QTLs/genes. Using multi-locus probability tests and linkage disequilibrium (LD) analyses, 46 functional genetic units (FGUs) (37 single loci and 9 association groups or AGs) distributed in 37 bins (~20%) across the rice genome for CT were detected. Together, each of the CT loci (bins) was detected in 1.7 populations, including 18 loci detected in two or more populations. Putative genetic networks (multi-locus structures) underlying CT were constructed based on strong non-random associations between or among donor alleles at the unlinked CT loci/FGUs identified in the CT ILs, suggesting the presence of strong epistasis among the detected CT loci. Our results demonstrated the power and usefulness of using selective introgression for simultaneous improvement and genetic dissection of complex traits such as CT in rice.


Subject(s)
Acclimatization/physiology , Cold Temperature , Epistasis, Genetic/physiology , Linkage Disequilibrium/physiology , Oryza/genetics , Quantitative Trait Loci/physiology , Crosses, Genetic
13.
Sci Rep ; 8(1): 6505, 2018 04 25.
Article in English | MEDLINE | ID: mdl-29695843

ABSTRACT

To facilitate developing rice varieties tolerant to salt stress, a panel of 208 rice mini-core accessions collected from 25 countries were evaluated for 13 traits associated with salt tolerance (ST) at the germination and seedling stages. The rice panel showed tremendous variation for all measured ST traits and eight accessions showing high levels of ST at either and/or both the germination and seedling stages. Using 395,553 SNP markers covering ~372 Mb of the rice genome and multi-locus mixed linear models, 20 QTN associated with 11 ST traits were identified by GWAS, including 6 QTN affecting ST at the germination stage and 14 QTN for ST at the seedling stage. The integration of bioinformatic with haplotype analyses for the ST QTN lets us identify 22 candidate genes for nine important ST QTN (qGR3, qSNK1, qSNK12, qSNC1, qSNC6, qRNK2, qSDW9a, qSST5 and qSST9). These candidate genes included three known ST genes (SKC1, OsTZF1 and OsEATB) for QTN qSNK1 qSST5 and qSST9. Candidate genes showed significant phenotypic differences in ST traits were detected between or among 2-4 major haplotypes. Thus, our results provided useful materials and genetic information for improving rice ST in future breeding and for molecular dissection of ST in rice.


Subject(s)
Genes, Plant/genetics , Germination/genetics , Oryza/genetics , Salt Tolerance/genetics , Seedlings/genetics , Computational Biology/methods , Genome-Wide Association Study/methods , Haplotypes/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics
14.
PeerJ ; 6: e4272, 2018.
Article in English | MEDLINE | ID: mdl-29404208

ABSTRACT

The eutrophic Bohai Sea receives large amount of suspended material, nutrients and contaminant from terrestrial runoff, and exchanges waters with the northern Yellow Sea through a narrow strait. This coastal region provides an ideal model system to study microbial biogeography. We performed high-throughput sequencing to investigate the distribution of bacterial taxa along spatial and environmental gradients. The results showed bacterial communities presented remarkable horizontal and vertical distribution under coastal gradients of spatial and environmental factors. Fourteen abundant taxa clustered the samples into three distinctive groups, reflecting typical habitats in shallow coastal water (seafloor depth ≤ 20 m), sunlit surface layer (at water surface with seafloor depth >20 m) and bottom water (at 2-3 m above sediment with seafloor depth >20 m). The most significant taxa of each cluster were determined by the least discriminant analysis effect size, and strongly correlated with spatial and environmental variables. Environmental factors (especially turbidity and nitrite) exhibited significant influences on bacterial beta-diversity in surface water (at 0 m sampling depth), while community similarity in bottom water (at 2-3 m above sediment) was mainly determined by depth. In both surface and bottom water, we found bacterial community similarity and the number of OTUs shared between every two sites decreased with increasing geographic distance. Bacterial dispersal was also affected by phosphate, which was possible due to the high ratios of IN/IP in this coastal sea area.

15.
Sci Rep ; 7(1): 17203, 2017 12 08.
Article in English | MEDLINE | ID: mdl-29222496

ABSTRACT

Rice eating and cooking quality and protein content (PC) are important properties affecting consumers' preferences, nutrition and health. Linkage QTL mapping and association studies are usually applied to genetically dissect related traits, which could be further facilitated by high density SNP markers and gene annotation based on reference genome to rapid identify candidate genes associated with interested traits. Here, we carried out an association study for apparent amylose content (AC), gel consistency (GC), gelatinization temperature (GT) and PC evaluated in two environments using a diverse panel of 258 accessions from 3 K Rice Genome Project. Wide phenotypic variations were observed in this panel. Genome-wide association study using 22,488 high quality SNPs identified 19 QTL affecting the four traits. Combining gene-based association study and haplotype analyses plus functional annotation allowed us to shortlist nine candidate genes for four important QTL regions affecting AC, GC and GT, including two cloned genes (Wx and ALK), and seven novels. The research suggested that GWAS and gene-based association analysis followed by haplotype analysis is an effective way to detect candidate genes. The identified genes and QTL provided valuable sources for future functional characterization and genetic improvement of rice eating and cooking quality and PC.


Subject(s)
Cooking , Food Quality , Genome-Wide Association Study , Oryza/genetics , Plant Proteins/genetics , Haplotypes , Phenotype , Quantitative Trait Loci/genetics
16.
BMC Genomics ; 18(1): 828, 2017 Oct 27.
Article in English | MEDLINE | ID: mdl-29078746

ABSTRACT

BACKGROUND: Ferrous iron (Fe) and zinc (Zn) at high concentration in the soil cause heavy metal toxicity and greatly affect rice yield and quality. To improve rice production, understanding the genetic and molecular resistance mechanisms to excess Fe and Zn in rice is essential. Genome-wide association study (GWAS) is an effective way to identify loci and favorable alleles governing Fe and Zn toxicty as well as dissect the genetic relationship between them in a genetically diverse population. RESULTS: A total of 29 and 31 putative QTL affecting shoot height (SH), root length (RL), shoot fresh weight (SFW), shoot dry weight (SDW), root dry weight (RDW), shoot water content (SWC) and shoot ion concentrations (SFe or SZn) were identified at seedling stage in Fe and Zn experiments, respectively. Five toxicity tolerance QTL (qSdw3a, qSdw3b, qSdw12 and qSFe5 / qSZn5) were detected in the same genomic regions under the two stress conditions and 22 candidate genes for 10 important QTL regions were also determined by haplotype analyses. CONCLUSION: Rice plants share partial genetic overlaps of Fe and Zn toxicity tolerance at seedling stage. Candidate genes putatively affecting Fe and Zn toxicity tolerance identified in this study provide valuable information for future functional characterization and improvement of rice tolerance to Fe and Zn toxicity by marker-assisted selection or designed QTL pyramiding.


Subject(s)
Chromosome Mapping , Genes, Plant , Genome-Wide Association Study , Iron , Oryza/physiology , Quantitative Trait Loci , Seedlings/physiology , Zinc , Adaptation, Biological/genetics , Iron/metabolism , Iron/toxicity , Phenotype , Polymorphism, Single Nucleotide , Stress, Physiological , Zinc/metabolism , Zinc/toxicity
17.
Front Plant Sci ; 8: 1275, 2017.
Article in English | MEDLINE | ID: mdl-28775730

ABSTRACT

Breeding of multi-stress tolerant rice varieties with higher grain yields is the best option to enhance the rice productivity of abiotic stresses prone areas. It also poses the greatest challenge to plant breeders to breed rice varieties for such stress prone conditions. Here, we carried out a designed QTL pyramiding experiment to develop high yielding "Green Super Rice" varieties with significantly improved tolerance to salt stress and grain yield. Using the F4 population derived from a cross between two selected introgression lines, we were able to develop six mostly homozygous promising high yielding lines with significantly improved salt tolerance and grain yield under optimal and/or saline conditions in 3 years. Simultaneous mapping using the same breeding population and tunable genotyping-by-sequencing technology, we identified three QTL affecting salt injury score and leaf chlorophyll content. By analyzing 32M SNP data of the grandparents and graphical genotypes of the parents, we discovered 87 positional candidate genes for salt tolerant QTL. According to their functional annotation, we inferred the most likely candidate genes. We demonstrated that designed QTL pyramiding is a powerful strategy for simultaneous improvement and genetic dissection of complex traits in rice.

18.
Front Plant Sci ; 8: 977, 2017.
Article in English | MEDLINE | ID: mdl-28642778

ABSTRACT

In a breeding effort to develop salt tolerant (ST) rice varieties by designed QTL pyramiding, large numbers of progenies derived from four crosses between salt- or drought- tolerant BC2F5 IR64 introgression lines, were subjected to severe salt stress, resulting in 422 ST plants. The progeny testing of the selected F3 lines under more severe salt stress resulted in identification of 16 promising homozygous lines with high levels of ST. Genetic characterization of the 422 ST F3 progeny and 318 random F2 plants from the same four crosses using 105 segregating SSR markers lead to three interesting discoveries: (1) salt stress can induce genome-wide epigenetic segregation (ES) characterized by complete loss of heterozygosity (LOH) and nearly complete loss of an allele (LOA) in the F3 progenies of four rice populations in a single generation; (2) ∼25% of the stress-induced ES loci were transgenerational and inherited from their salt- and drought- selected parents; and (3) the salt-induced LOH and LOA loci (regions) appeared to contain genes/alleles associated with ST and/or drought tolerance. 32 genomic regions that showed one or more types of salt-induced ES in the random and salt-selected progenies from these crosses. The same or different types of ES were detected with two large genomic regions on chromosomes 1 and 6 where more and the strongest ES were found across different populations. 14 genomic regions were found where the salt-induced ES regions were overlapping with QTL affecting ST related traits. The discovery of the three types of salt-induced ES showed several interesting characteristics and had important implications in evolution and future breeding for developing stress-resilient rice and crops.

19.
Mar Pollut Bull ; 120(1-2): 90-98, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28483140

ABSTRACT

The Laizhou Bay is famous for aquaculture, but has been subject to eutrophication and contamination for years. High concentrations of nutrients from the Xiaoqing River are considered as the main cause for significant eutrophication in the west of Laizhou Bay. Here we present results of the research on sedimentary microbial assemblages along this spatial gradient between riverine and marine environments by high-throughput sequencing. The predominant phyla/classes of bacteria and fungi clustered the samples into two distinct provinces, while discriminant taxa of each province were strongly associated with spatial factors and inorganic nitrogen. Spatial variation of bacterial communities was mainly related with the distribution of phosphates, suggesting a phosphate-limitation pattern for the bacterial communities. Alpha- and beta-diversity of fungal communities exhibited a significant correlation with water depth. We consider the distinct distributional gradients of bacterial and fungal communities partly explain the different roles in the biogeochemical processes of coastal sediment.


Subject(s)
Bacteria , Eutrophication , Geologic Sediments/chemistry , Aquaculture , Bays , Environmental Monitoring , Nitrogen , Rivers
20.
PLoS One ; 12(3): e0172515, 2017.
Article in English | MEDLINE | ID: mdl-28278154

ABSTRACT

To develop superior rice varieties with improved yield in most rainfed areas of Asia/Africa, we started an introgression-breeding program for simultaneously improving yield and tolerances of multiple abiotic stresses. Using eight BC1 populations derived from a widely adaptable recipient and eight donors plus three rounds of phenotypic selection, we developed 496 introgression lines (ILs) with significantly higher yield under drought, salt and/or non-stress conditions in 5 years. Six new varieties were released in the Philippines and Pakistan and many more are being evaluated in multi-location yield trials for releasing in several countries. Marker-facilitated genetic characterization revealed three interesting aspects of the breeding procedure: (1) the donor introgression pattern in specific BC populations was characteristic; (2) introgression frequency in different genomic regions varied considerably, resulting primarily from strong selection for the target traits; and (3) significantly lower heterozygosity was observed in BC progenies selected for drought and salinity tolerance. Applying strong phenotypic selection under abiotic stresses in early segregating generations has major advantages for not only improving multiple abiotic stress tolerance but also achieving quicker homozygosity in early generations. This breeding procedure can be easily adopted by small breeding programs in developing countries to develop high-yielding varieties tolerant of abiotic stresses. The large set of trait-specific ILs can be used for genetic mapping of genes/QTL that affect target and non-target traits and for efficient varietal development by designed QTL pyramiding and genomics-based recurrent selection in our Green Super Rice breeding technology.


Subject(s)
Adaptation, Physiological/genetics , Genetic Markers/genetics , Genetic Variation/genetics , Oryza/genetics , Quantitative Trait Loci , Salt Tolerance/genetics , Chromosome Mapping , Crosses, Genetic , Droughts , Oryza/growth & development , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...