Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phytochem Anal ; 35(2): 271-287, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37779218

ABSTRACT

INTRODUCTION: Coptidis Rhizoma (CR) is one of the most frequently used herbs to treat ulcerative colitis (UC) and is often processed before usage. However, the composition changes and therapeutic effects of CR before and after processing in the treatment of UC are still unclear. OBJECTIVE: The purpose of the study is to explore the chemical components and therapeutic effects of crude and processed CR. MATERIAL AND METHODS: CR was processed according to the 2020 version of the Chinese Pharmacopoeia. The liquid chromatography-mass spectrometry (LC-MS) and multivariate statistical analysis were used to screen the different compounds before and after processing. The network pharmacological prediction was carried out. The mechanism and therapeutic effects between crude and processed CR were verified by using dextran sulphate sodium-induced UC mice assay. RESULTS: Ten compounds distinguish crude and processed CR based on multivariate statistical analysis. Network pharmacology predicts that the 10 compounds mainly play a role through TNF-α and IL-6 targets and PI3K/Akt and HIF-1 signalling pathways, and these results are verified by molecular biology experiments. For IL-6, IL-10 and TNF-α inflammatory factors, CR is not effective, while CR stir-fried with Evodiae Fructus (CRFE) and ginger juice (CRGJ) are. For PI3K/p-Akt, Cleaved caspase3, NF- κBp65 and HIF-1α signalling pathways, CR has therapeutic effects, while CRFE and CRGJ are significant. CONCLUSION: Overall, CRFE and CRGJ show better effects in treating UC. The chemical changes of processing and the efficacy of processed CR are correlated, which provides a scientific basis for the clinical use of crude and processed CR.


Subject(s)
Colitis, Ulcerative , Drugs, Chinese Herbal , Mice , Animals , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , Network Pharmacology , Tumor Necrosis Factor-alpha , Interleukin-6 , Phosphatidylinositol 3-Kinases/therapeutic use , Proto-Oncogene Proteins c-akt/therapeutic use
2.
Transbound Emerg Dis ; 68(6): 3658-3675, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33406318

ABSTRACT

Infectious bursal disease (IBD) is one of the most economically important infectious diseases. Currently, vaccination is the most effective method to prevent IBD. Medium-virulence vaccines can damage the bursa of Fabricius and result in immunosuppression. Therefore, it is essential to develop a safe and effective vaccine against infectious bursal disease virus (IBDV). In this study, the five neutralizing epitopes of the IBDV VP2 protein were confirmed by neutralizing single chain variable fragment antibodies. Then, the neutralizing epitopes antigen (NEA) protein was constructed with five neutralizing epitopes and expressed by pET-27b. Furthermore, the immune effect and protective immunity of the NEA protein with the following adjuvants were evaluated in specific-pathogen-free chickens: oil emulsion adjuvant (OEA), double emulsion adjuvant (DEA), granulocyte-macrophage colony-stimulating factor (GM-CSF) adjuvant and complete Freund's adjuvant (CFA). The experimental results demonstrated that chickens immunized with NEA vaccines elicited stronger humoral and/or cellular immune responses and inflammatory responses than those in the NEA protein group. Chickens were protected in OEA, CFA and GM-CSF adjuvant groups, which were challenged with virulent IBDV BC6/85. Furthermore, IBDV RNA was not measured, and there appeared to be little apoptosis in the bursa of Fabricius based on TUNEL histology and the expression of Bax and Bcl-2 in the OEA, CFA and GM-CSF adjuvant groups. Based on the experimental results, the advantages and disadvantages of adjuvants and industrial production methods, GM-CSF was found to be the optimal adjuvant. Therefore, NEA with GM-CSF adjuvant is a promising vaccine candidate against IBDV, and it provides a framework for developing other vaccines against infectious viral diseases.


Subject(s)
Infectious bursal disease virus , Poultry Diseases , Viral Vaccines , Animals , Antibodies, Viral , Bursa of Fabricius , Chickens , Epitopes , Poultry Diseases/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...