Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Digit Med ; 7(1): 13, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225423

ABSTRACT

Facial palsy (FP) profoundly influences interpersonal communication and emotional expression, necessitating precise diagnostic and monitoring tools for optimal care. However, current electromyography (EMG) systems are limited by their bulky nature, complex setups, and dependence on skilled technicians. Here we report an innovative biosensing approach that utilizes a PEDOT:PSS-modified flexible microneedle electrode array (P-FMNEA) to overcome the limitations of existing EMG devices. Supple system-level mechanics ensure excellent conformality to the facial curvilinear regions, enabling the detection of targeted muscular ensemble movements for facial paralysis assessment. Moreover, our apparatus adeptly captures each electrical impulse in response to real-time direct nerve stimulation during neurosurgical procedures. The wireless conveyance of EMG signals to medical facilities via a server augments access to patient follow-up evaluation data, fostering prompt treatment suggestions and enabling the access of multiple facial EMG datasets during typical 6-month follow-ups. Furthermore, the device's soft mechanics alleviate issues of spatial intricacy, diminish pain, and minimize soft tissue hematomas associated with traditional needle electrode positioning. This groundbreaking biosensing strategy has the potential to transform FP management by providing an efficient, user-friendly, and less invasive alternative to the prevailing EMG devices. This pioneering technology enables more informed decision-making in FP-management and therapeutic intervention.

2.
Front Immunol ; 13: 978513, 2022.
Article in English | MEDLINE | ID: mdl-36426363

ABSTRACT

Nanobodies are antibody fragments derived from camelids, naturally endowed with properties like low molecular weight, high affinity and low immunogenicity, which contribute to their effective use as research tools, but also as diagnostic and therapeutic agents in a wide range of diseases, including brain diseases. Also, with the success of Caplacizumab, the first approved nanobody drug which was established as a first-in-class medication to treat acquired thrombotic thrombocytopenic purpura, nanobody-based therapy has received increasing attention. In the current review, we first briefly introduce the characterization and manufacturing of nanobodies. Then, we discuss the issue of crossing of the brain-blood-barrier (BBB) by nanobodies, making use of natural methods of BBB penetration, including passive diffusion, active efflux carriers (ATP-binding cassette transporters), carrier-mediated influx via solute carriers and transcytosis (including receptor-mediated transport, and adsorptive mediated transport) as well as various physical and chemical methods or even more complicated methods such as genetic methods via viral vectors to deliver nanobodies to the brain. Next, we give an extensive overview of research, diagnostic and therapeutic applications of nanobodies in brain-related diseases, with emphasis on Alzheimer's disease, Parkinson's disease, and brain tumors. Thanks to the advance of nanobody engineering and modification technologies, nanobodies can be linked to toxins or conjugated with radionuclides, photosensitizers and nanoparticles, according to different requirements. Finally, we provide several perspectives that may facilitate future studies and whereby the versatile nanobodies offer promising perspectives for advancing our knowledge about brain disorders, as well as hopefully yielding diagnostic and therapeutic solutions.


Subject(s)
Alzheimer Disease , Single-Domain Antibodies , Humans , Blood-Brain Barrier , Brain , Alzheimer Disease/drug therapy , Genetic Vectors
SELECTION OF CITATIONS
SEARCH DETAIL
...