Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 122, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28273924

ABSTRACT

The approximate analytical expressions of tripole-mode and quadrupole-mode solitons in (1 + 1)-dimensional nematic liquid crystals are obtained by applying the variational approach. It is found that the soliton powers for the two types of solitons are not equal with the same parameters, which is much different from their counterparts in the Snyder-Mitchell model (an ideal and typical strongly nolocal nonlinear model). The numerical simulations show that for the strongly nonlocal case, by expanding the response function to the second order, the approximate soliton solutions are in good agreement with the numerical results. Furthermore, by expanding the respond function to the higher orders, the accuracy and the validity range of the approximate soliton solutions increase. If the response function is expanded to the tenth order, the approximate solutions are still valid for the general nonlocal case.

2.
Sci Rep ; 6: 29128, 2016 07 06.
Article in English | MEDLINE | ID: mdl-27381942

ABSTRACT

Topological insulators (TIs), are novel two-dimension materials, which can act as effective saturable absorbers (SAs) in a fiber laser. Moreover, based on the evanescent wave interaction, deposition of the TI on microfiber would create an effective SA, which has combined advantages from the strong nonlinear optical response in TI material together with the sufficiently-long-range interaction length in fiber taper. By using this type of TI SA, various scalar solitons have been obtained in fiber lasers. However, a single mode fiber always exhibits birefringence, and hence can support two orthogonal degenerate modes. Here we investigate experimentally the vector characters of a TI SA fiber laser. Using the saturated absorption and the high nonlinearity of the TI SA, a rich variety of dynamic states, including polarization-locked dark pulses and their harmonic mode locked counterparts, polarization-locked noise-like pulses and their harmonic mode locked counterparts, incoherently coupled polarization domain wall pulses, including bright square pulses, bright-dark pulse pairs, dark pulses and bright square pulse-dark pulse pairs are all observed with different pump powers and polarization states.

3.
Nano Lett ; 11(10): 4295-8, 2011 Oct 12.
Article in English | MEDLINE | ID: mdl-21879718

ABSTRACT

A waveguide-plasmonic scheme is constructed by coating the matrix of randomly distributed gold nanoisland structures with a layer of dye-doped polymer, which provides strong feedback or gain channels for the emission from the dye molecules and enables successful running of a random laser. Excellent overlap of the plasmonic resonance of the gold nanoislands with the photoluminescence spectrum of the dye molecules and the strong confinement mechanism provided by the active waveguide layer are the key essentials for the narrow-band and low-threshold operation of this random laser. This kind of feedback configuration potentially enables directional output from such random lasers. The flexible solution-processable fabrication of the plasmonic gold nanostructures not only enables easy realization of such a random laser but also provides mechanisms for the tuning and multicolor operation of the laser emission.

4.
Opt Express ; 19(7): 6487-92, 2011 Mar 28.
Article in English | MEDLINE | ID: mdl-21451677

ABSTRACT

The active waveguide grating structures (AWGS) are demonstrated as distributed feedback (DFB) configuration for polymer lasers. The thin film of a typical light-emitting polymer poly [(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(1,4-benzo-{2,1',3}-thiadiazole)] acts both as the gain medium and as the waveguide. The grating structures are fabricated separately on top of the polymer film through interference lithography. The continuous and high-quality waveguide layer of the gain medium enables laser emission with narrow linewidth. Theoretical analysis and experimental verification imply potentially excellent performance of the organic DFB lasers based on the AWGS configuration. This kind of AWGS configuration is of particular importance for the design of electrically pumped polymer lasers.


Subject(s)
Lasers , Polymers/chemistry , Refractometry/instrumentation , Surface Plasmon Resonance/instrumentation , Equipment Design , Equipment Failure Analysis
6.
Nanotechnology ; 22(14): 145303, 2011 Apr 08.
Article in English | MEDLINE | ID: mdl-21346302

ABSTRACT

We report direct writing of metallic photonic crystals (MPCs) through a single-shot exposure of a thin film of colloidal gold nanoparticles to the interference pattern of a single UV laser pulse before a subsequent annealing process. This is defined as interference ablation, where the colloidal gold nanoparticles illuminated by the bright interference fringes are removed instantly within a timescale of about 6 ns, which is actually the pulse length of the UV laser, whereas the gold nanoparticles located within the dark interference fringes remain on the substrate and form grating structures. This kind of ablation has been proven to have a high spatial resolution and thus enables successful fabrication of waveguided MPC structures with the optical response in the visible spectral range. The subsequent annealing process transforms the grating structures consisting of ligand-covered gold nanoparticles into plasmonic MPCs. The annealing temperature is optimized to a range from 250 to 300 °C to produce MPCs of gold nanowires with a period of 300 nm and an effective area of 5 mm in diameter. If the sample of the spin-coated gold nanoparticles is rotated by 90° after the first exposure, true two-dimensional plasmonic MPCs are produced through a second exposure to the interference pattern. Strong plasmonic resonance and its coupling with the photonic modes of the waveguided MPCs verifies the success of this new fabrication technique. This is the simplest and most efficient technique so far for the construction of large-area MPC devices, which enables true mass fabrication of plasmonic devices with high reproducibility and high success rate.


Subject(s)
Lasers , Nanotechnology/methods , Nanowires/chemistry , Ultraviolet Rays , Freezing , Glass/chemistry , Gold/chemistry , Hot Temperature , Metal Nanoparticles/chemistry , Microscopy, Electron, Scanning , Nanowires/ultrastructure , Optics and Photonics , Spectrum Analysis , Surface Plasmon Resonance , Tin Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...