Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37631398

ABSTRACT

With the burgeoning of the microelectronics industry, in order to improve the transmission speed between chips in large-scale integrated circuits to meet the demands of high integration, it is necessary for interlayer insulation materials to possess a lower dielectric constant (k). Polyimide (PI) has been widely used as interlayer insulation materials for large-scale integrated circuits, and the exploration on reducing their dielectric constant has attracted extensive attention in recent years. In this work, porous PI-based composites with a low dielectric constant are mainly reviewed. The application of porous SiO2, graphene derivatives, polyoxometalates, polyhedral oligomeric silsesquioxane and hyperbranched polysiloxane in reducing the dielectric constant of PI is emphatically introduced. The key technical problems and challenges in the current research of porous polyimide materials are summarized, and the development prospect of low k polyimide is also expounded.

2.
Nat Commun ; 14(1): 601, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36737612

ABSTRACT

One of unsolved puzzles about water lies in how ion-water interplay affects its freezing point. Here, we report the direct link between tetrahedral entropy and the freezing behavior of water in Zn2+-based electrolytes by analyzing experimental spectra and molecular simulation results. A higher tetrahedral entropy leads to lower freezing point, and the freezing temperature is directly related to the entropy value. By tailoring the entropy of water using different anions, we develop an ultralow temperature aqueous polyaniline| |Zn battery that exhibits a high capacity (74.17 mAh g-1) at 1 A g-1 and -80 °C with ~85% capacity retention after 1200 cycles due to the high electrolyte ionic conductivity (1.12 mS cm-1). Moreover, an improved cycling life is achieved with ~100% capacity retention after 5000 cycles at -70 °C. The fabricated battery delivers appreciably enhanced performance in terms of frost resistance and stability. This work serves to provide guidance for the design of ultralow temperature aqueous batteries by precisely tuning the water structure within electrolytes.

SELECTION OF CITATIONS
SEARCH DETAIL
...