Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 645: 937-945, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30032089

ABSTRACT

Calcium silicate hydrate (CSH) is a popular material used for phosphorus removal in recent years. In this work, a novel immobilized material, polyvinyl alcohol-CSH (PVA-CSH), was prepared using a 1:10 weight ratio of CSH powder to 8% PVA solution and then used for phosphorus removal. Samples were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The adsorption mechanism and practical application properties of phosphorus wastewater were studied by sequential batch and continuous flow experiment. The results showed PVA-CSH possessed a porous network structure and an average pore diameter of 24.94 ±â€¯0.11 nm. Furthermore, the CSH functional groups were unaffected by PVA immobilization. Compared with CSH, PVA-CSH did not easily lose CSH after being immobilized by PVA, and the duration of efficient phosphorus removal stage was approximately 20 h longer than that of CSH. In addition, the effluent turbidity of PVA-CSH was 0.11 ±â€¯0.03 NTU during the continuous operation period, which was significantly lower than CSH. In summary, this research study demonstrated the significant potential of PVA-CSH for practical phosphorus removal.

2.
Water Sci Technol ; 74(6): 1354-1364, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27685965

ABSTRACT

The primary goal of this study is to investigate ammonia removal, abundance of nitrifying bacteria and microbial community structures in a laboratory-scale integrated fixed film activated sludge (IFAS) reactor. The results of Illumina MiSeq sequencing based on 16S rRNA genes showed Proteobacteria and Bacteroidetes were the dominant phyla in both biofilm and suspended sludge samples in the IFAS reactor. The dominant ammonia-oxidizing bacteria (AOB) species was Nitrosomonas and the dominant nitrite-oxidizing bacteria species was Nitrospira. The contribution of biofilm to ammonia removal increased from 4.0 ± 0.9% to 37.0 ± 2% when the temperature decreased from 25 °C to 10 °C. The real-time polymerase chain reaction (PCR) result showed the abundance of AOB in suspended sludge was higher than that in biofilm at the same time. However, nitrification is more dependent on attached growth than on suspended growth in the IFAS reactor at 15 °C and 10 °C and the abundance of AOB in biofilm was also higher than that in suspended sludge. The more robust ammonia removal rate at low temperatures by biofilm contributed to the relatively stable ammonia removal, and biofilm attached on carriers in the IFAS reactor is advantageous for nitrification in low-temperature environment.


Subject(s)
Bacteria/metabolism , Bioreactors/microbiology , Nitrification , Sewage/microbiology , Ammonia , Bacteria/classification , Bacteria/genetics , Biofilms/growth & development , High-Throughput Nucleotide Sequencing/methods , RNA, Bacterial/genetics , RNA, Ribosomal, 16S , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...