Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Photochem Photobiol B ; 170: 247-255, 2017 May.
Article in English | MEDLINE | ID: mdl-28454049

ABSTRACT

The photodynamic properties of Hypericin (Hyp) may be used as an alternative treatment for malignancies of the lower gastrointestinal tract and for the prevention of surgical-site infection; however, its use in photodynamic therapy has been limited because of its poor hydrosolubility. Therefore, in order to improve its water solubility and its photodynamic effect, Hyp was encapsulated in Pluronic P123 (P123) and the photodynamic effects against intestinal and epidermal bacteria and against two lineages of intestinal colon carcinoma cells were investigated. Two response surface methods (RSM) were used to achieve the best in vitro photodynamic activity against Enterococcus faecalis, Escherichia coli and Staphylococcus aureus: in the first (full 23 RSM), Hyp concentration (HC*), incubation time (IT*) and LED-light time (LT*) were considered as the independent variables and E. faecalis inhibition as the dependent variable. In the second (full 32 RSM), Hyp concentration (HC*) and P123 concentration (CC*) were considered as independent variables and E. faecalis, E. coli and S. aureus inhibition as dependent variables. The optimized experimental conditions achieved were: Hyp concentration=37.5µmol/L; P123 concentration=21.5 µmol/L and 6.3J/cm2, which resulted in 2.86±0.12 and 2.30±0.31CFU log-reductions of E. faecalis and S. aureus. No effect was seen against E. coli. The cytotoxic effects of Hyp/P123 were also investigated for Caco-2 and HT-29 intestinal colon carcinoma cells at Hyp/P123 concentrations of 1, 0.5, 0.25 and 0.1µmol/L for Caco-2 cells and 4, 3, 2 and 1µmol/L for HT-29 cells. The cytotoxic concentrations for 50% (CC50) and 90% (CC90) of Hyp/P123 were 0.443 and 0.870µmol/L for Caco-2 cells and 1.4 and 2.84µmol/L for HT-29 cells. The P123 nanocarrier played a significant role in the permeation of Hyp through the cell membrane leading to significant cell death, and showed itself to be a promising photosensitizer for PDT that could be suitable for the treatment of colonic diseases since it is effective against positive Gram bacteria and intestinal colon carcinoma cells.


Subject(s)
Anti-Infective Agents/chemistry , Micelles , Perylene/analogs & derivatives , Photosensitizing Agents/chemistry , Anthracenes , Anti-Infective Agents/pharmacology , Caco-2 Cells , Cell Survival/drug effects , Cell Survival/radiation effects , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Drug Compounding , Enterococcus faecium/drug effects , Escherichia coli/drug effects , HT29 Cells , Humans , Light , Perylene/chemistry , Perylene/pharmacology , Perylene/toxicity , Photochemotherapy , Photosensitizing Agents/pharmacology , Photosensitizing Agents/toxicity , Poloxalene/chemistry , Staphylococcus aureus/drug effects , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...