Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Biopharm ; 152: 175-182, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32416135

ABSTRACT

Releasing a protein according to a zero-order profile without protein denaturation during the polymeric microparticle degradation process is very challenging. The aim of the current study was to develop protein-loaded microspheres with new PLGA based penta-block copolymers for a linear sustained protein release. Lysozyme was chosen as model protein and 40 µm microspheres were prepared using the solid-in-oil-in-water solvent extraction/evaporation process. Two types of PLGA-P188-PLGA penta-block copolymers were synthetized with two PLGA-segments molecular weight (20 kDa or 40 kDa). The resulting microspheres (50P20-MS and 50P40-MS) had the same size, an encapsulation efficiency around 50-60% but different porosities. Their protein release profiles were complementary: linear but non complete for 50P40-MS, non linear but complete for 50P20-MS. Two strategies, polymer blending and microsphere mixing, were considered to match the release to the desired profile. The (1:1) microsphere mixture was successful. It induced a bi-phasic release with a moderate initial burst (around 13%) followed by a nearly complete linear release for 8 weeks. This study highlighted the potential of this penta-block polymer where the PEO block mass ratio influence clearly the Tg and consequently the microsphere structure and the release behavior at 37 °C. The (1:1) mixture was a starting point but could be finely tuned to control the protein release.


Subject(s)
Polymers/chemistry , Proteins/chemistry , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/economics , Microspheres , Muramidase , Particle Size , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Porosity
2.
Commun Biol ; 2: 196, 2019.
Article in English | MEDLINE | ID: mdl-31123719

ABSTRACT

Intrauterine adhesions lead to partial or complete obliteration of the uterine cavity and have life-changing consequences for women. The leading cause of adhesions is believed to be loss of stroma resulting from trauma to the endometrium after surgery. Adhesions are formed when lost stroma is replaced by fibrous tissue that join the uterine walls. Few effective intrauterine anti-adhesion barriers for gynecological surgery exist. We designed a degradable anti-adhesion medical device prototype to prevent adhesion formation and recurrence and restore uterine morphology. We focused on ideal degradation time for complete uterine re-epithelialization for optimal anti-adhesion effect and clinical usability. We developed a triblock copolymer prototype [poly(lactide) combined with high molecular mass poly(ethylene oxide)]. Comparative pre-clinical studies demonstrated in vivo anti-adhesion efficacy. Ease of introduction and optimal deployment in a human uterus confirmed clinical usability. This article provides preliminary data to develop an intrauterine medical device and conduct a clinical trial.


Subject(s)
Equipment Design , Tissue Adhesions/prevention & control , Uterine Diseases/metabolism , Uterus/pathology , Uterus/surgery , Adult , Animals , Cell Adhesion , Collagen , Endometrium/pathology , Female , Humans , In Vitro Techniques , Magnetic Resonance Spectroscopy , Polyesters/chemistry , Polyethylene Glycols/chemistry , Random Allocation , Rats , Rats, Wistar , Recurrence , Viscosity
3.
Int J Pharm ; 535(1-2): 428-437, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-29157963

ABSTRACT

Here, we aimed to develop protein loaded microspheres (MSs) using penta-block PLGA-based copolymers to obtain sustained and complete protein release. We varied MS morphology and studied the control of protein release. Lysozyme was used as a model protein and MSs were prepared using the solid-in-oil-in-water emulsion solvent extraction method. We synthesized and studied various penta-block PLGA-based copolymers. Copolymer characteristics (LA/GA ratio and molecular weight of PLGA blocks) influenced MS morphology. MS porosity was influenced by process parameters (such as solvent type, polymer concentration, emulsifying speed), whereas the aqueous volume for extraction and stabilizer did not have a significant effect. MSs of the same size, but different morphologies, exhibited different protein release behavior, with porous structures being essential for the continuous and complete release of encapsulated protein. These findings suggest strategies to engineer the morphology of MSs produced from PLGA-based multi-block copolymers to achieve appropriate release rates for a protein delivery system.


Subject(s)
Lactic Acid/chemistry , Microspheres , Muramidase/chemistry , Polyglycolic Acid/chemistry , Drug Liberation , Polylactic Acid-Polyglycolic Acid Copolymer , Porosity
4.
Acta Biomater ; 8(3): 1339-47, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22115697

ABSTRACT

A great deal of effort has been made since the 1990s to enlarge the field of magnetic resonance imaging. Better tissue contrast, more biocompatible contrast agents and the absence of any radiation for the patient are some of the many advantages of using magnetic resonance imaging (MRI) rather than X-ray technology. But implantable medical devices cannot be visualized by conventional MRI and a tool therefore needs to be developed to rectify this. The synthesis of a new MRI-visible degradable polymer is described by grafting an MR contrast agent (DTPA-Gd) to a non-water-soluble, biocompatible and degradable poly(ε-caprolactone) (PCL). The substitution degree, calculated by (1)H nuclear magnetic resonance and inductively coupled plasma-mass spectrometry, is close to 0.5% and proves to be sufficient to provide a strong and clear T1 contrast enhancement. This new MRI-visible polymer was coated onto a commercial mesh for tissue reinforcement using an airbrush system and enabled in vitro MR visualization of the mesh for at least 1 year. A stability study of the DTPA-Gd-PCL chelate in phosphate-buffered saline showed that a very low amount of gadolinium was released into the medium over 52 weeks, guaranteeing the safety of the device. This study shows that this new MRI-visible polymer has great potential for the MR visualization of implantable medical devices and therefore the post-operative management of patients.


Subject(s)
Contrast Media/pharmacology , Magnetic Resonance Imaging , Polyesters , Prostheses and Implants , Cells, Cultured , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...