Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 1304, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31992778

ABSTRACT

In modern environments, pore water geochemistry and modelling simulations allow the study of methane (CH4) sources and sinks at any geographic location. However, reconstructing CH4 dynamics in geological records is challenging. Here, we show that the benthic foraminiferal δ34S can be used to reconstruct the flux (i.e., diffusive vs. advective) and timing of CH4 emissions in fossil records. We measured the δ34S of Cassidulina neoteretis specimens from selected samples collected at Vestnesa Ridge, a methane cold seep site in the Arctic Ocean. Our results show lower benthic foraminiferal δ34S values (∼20‰) in the sample characterized by seawater conditions, whereas higher values (∼25-27‰) were measured in deeper samples as a consequence of the presence of past sulphate-methane transition zones. The correlation between δ34S and the bulk benthic foraminiferal δ13C supports this interpretation, whereas the foraminiferal δ18O-δ34S correlation indicates CH4 advection at the studied site during the Early Holocene and the Younger-Dryas - post-Bølling. This study highlights the potential of the benthic foraminiferal δ34S as a novel tool to reconstruct the flux of CH4 emissions in geological records and to indirectly date fossil seeps.

2.
Sci Rep ; 8(1): 10201, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29976938

ABSTRACT

This work shows that calcareous benthic foraminifera are capable of agglutinating sedimentary particles also. In particular, we focus on Melonis barleeanus. Traditionally considered a calcareous species, our data revealed the presence of minute (~3 µm) sedimentary particles (silicate grains) inside the chamber walls of the examined shells. These particles were arranged in a definitive and systematic pattern, and the similar grain chemical characterization and size suggested a relatively high degree of selectivity in both modern and fossil specimens. Based on these results, we propose that M. barleeanus is capable of agglutinating sedimentary particles during the formation of a new chamber. The analysis of other calcareous foraminiferal species (e.g., Cassidulina neoteretis, Lobatula lobatula, Nonionella stella) did not reveal the presence of silicate grains in the shell of the specimens analyzed confirming this to be a characteristic of M. barleeanus. Considering that the isotopic and chemical composition of this species is widely used in paleoclimatic and paleoceanographic reconstructions, we used a mixing model to better constrain the influence of sedimentary particles on M. barleeanus δ18O data. Our model showed that the calcite δ18O would increase by ~0.9-2‰ if 10 wt% of feldspars (i.e., anorthite, albite, orthoclase) and quartz, respectively, were included in the analyzed shell. Based on these results, we emphasize that it is of paramount importance to consider M. barleeanus unusual biomineralization strategy during the interpretation of geological records and to investigate the presence of similar processes in other calcareous foraminiferal species.


Subject(s)
Foraminifera/metabolism , Geologic Sediments/chemistry , Silicates/metabolism , Animal Shells/metabolism , Animals , Biomineralization , Fossils
3.
Geobiology ; 8(2): 101-11, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20059556

ABSTRACT

Earth scientists have searched for signs of microscopic life in ancient samples of permafrost, ice, deep-sea sediments, amber, salt and chert. Until now, evidence of cyanobacteria has not been reported in any studies of ancient DNA older than a few thousand years. Here, we investigate morphologically, biochemically and genetically primary evaporites deposited in situ during the late Miocene (Messinian) Salinity Crisis from the north-eastern Apennines of Italy. The evaporites contain fossilized bacterial structures having identical morphological forms as modern microbes. We successfully extracted and amplified genetic material belonging to ancient cyanobacteria from gypsum crystals dating back to 5.910-5.816 Ma, when the Mediterranean became a giant hypersaline brine pool. This finding represents the oldest ancient cyanobacterial DNA to date. Our clone library and its phylogenetic comparison with present cyanobacterial populations point to a marine origin for the depositional basin. This investigation opens the possibility of including fossil cyanobacterial DNA into the palaeo-reconstruction of various environments and could also be used to quantify the ecological importance of cyanobacteria through geological time. These genetic markers serve as biosignatures providing important clues about ancient life and begin a new discussion concerning the debate on the origin of late Miocene evaporites in the Mediterranean.


Subject(s)
Calcium Sulfate , Cyanobacteria/classification , Fossils , Genes, rRNA , Paleontology , RNA, Ribosomal, 16S/genetics , Calcium Sulfate/chemistry , Crystallization , Cyanobacteria/genetics , DNA, Bacterial/analysis , DNA, Bacterial/isolation & purification , Evolution, Molecular , Geologic Sediments/microbiology , Italy , Microscopy, Electron, Scanning , Phylogeny , Sequence Analysis, DNA , Sodium Selenite
SELECTION OF CITATIONS
SEARCH DETAIL
...