Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Radioact ; 247: 106853, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35276605

ABSTRACT

Three unusual radioactive isotopes of xenon-125Xe, 127Xe, and 129mXe-have been observed during testing of a new generation radioxenon measurement system at the manufacturing facility in Knoxville, Tennessee. These are possibly the first detections of these isotopes in environmental samples collected by automated radioxenon systems. Unfortunately, the new isotopes detected by the Xenon International sampler can interfere with quantification of the radioactive xenon isotopes used to monitor for nuclear explosions. Xenon International sampling data collected during February through September 2020 were combined with an atmospheric transport model to identify the possible release location. A source-location analyses using sample counts dominated by 125Xe strongly supports the conclusion that the release point is near (within 20 km) the sampler location. Wind patterns are not consistent with releases coming from more distant nuclear power plants. The High Flux Isotope Reactor (HFIR) and the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory are located in the region of most likely source locations. The source-location analysis cannot rule out either facility as a release location, and some of the samples may contain a combination of releases from both facilities. The source-location results using 125Xe are not unexpected because Klingberg et al. (2013) previously published the production rate of radioactive xenon isotopes from neutron activation of stable xenon in the air at the HFIR. Up to 1012 Bq of 125Xe could be produced per operational day and other xenon isotopes would be produced in lesser quantities.


Subject(s)
Air Pollutants, Radioactive , Radiation Monitoring , Air Pollutants, Radioactive/analysis , Radiation Monitoring/methods , Radioisotopes/analysis , Xenon/analysis , Xenon Isotopes/analysis , Xenon Radioisotopes/analysis
2.
Appl Radiat Isot ; 107: 187-190, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26516993

ABSTRACT

Age-dating groundwater and seawater using the (39)Ar/Ar ratio is an important tool to understand water mass-flow rates and mean residence time. Low-background proportional counters developed at Pacific Northwest National Laboratory use mixtures of argon and methane as counting gas. We demonstrate sensitivity to (39)Ar by comparing geological (ancient) argon recovered from a carbon dioxide gas well and commercial argon. The demonstrated sensitivity to the (39)Ar/Ar ratio is sufficient to date water masses as old as 1000 years.

3.
Appl Opt ; 54(9): 2413-23, 2015 Mar 20.
Article in English | MEDLINE | ID: mdl-25968530

ABSTRACT

Liquid scintillation counters measure charged particle-emitting radioactive isotopes and are used for environmental studies, nuclear chemistry, and life science. Alpha and beta emissions arising from the material under study interact with the scintillation cocktail to produce light. The prototypical liquid scintillation counter employs low-level photon-counting detectors to measure the arrival of the scintillation. For reliable operation, the counting instrument must convey the scintillation light to the detectors efficiently and predictably. Current best practices employ the use of two or more detectors for coincidence processing to discriminate true scintillation events from background events due to instrumental effects such as photomultiplier tube dark rates, tube flashing, or other light emission not generated in the scintillation cocktail vial. In low-background liquid scintillation counters, additional attention is paid to shielding the scintillation cocktail from naturally occurring radioactive material present in the laboratory and within the instrument's construction materials. Low-background design is generally at odds with optimal light collection. This study presents the evolution of a light collection design for liquid scintillation counting (LSC) in a low-background shield. The basic approach to achieve both good light collection and a low-background measurement is described. The baseline signals arising from the scintillation vial are modeled and methods to efficiently collect scintillation light are presented as part of the development of a customized low-background, high-sensitivity LSC system.

SELECTION OF CITATIONS
SEARCH DETAIL
...